DOI QR코드

DOI QR Code

A Study on the Detection Range of Acoustic Instruments for Fisheries

수산음향계측장치의 탐지범위에 대한 연구

  • Park, Ju-Sam (The Fisheries Science Institute, Yosu National University)
  • 박주삼 (여수대학교 수산과학연구소)
  • Published : 2005.02.01

Abstract

Detection ranges of acoustic instruments mainly used for fisheries and their research are derived as the range bordered by a certain signal-to-noise ration (SNR) thershold. The SNR is depicted by several factors on transmitting and receiving, sound propagation, scattering by objects, and mainly self-ship noise. The detection ranges are shown for several fisheries instrument, such as echo sounder, quantiative echo sounder, and bio-telemetry system. The results can be used for designing the instruments, examining the capability of user's own instruments, and interpreting obtained data or echograms. Increasing transmitting power is not as effective for high frequencies as for low frequencies to increase the detection range. Comparison of volume backscattering strengths obtained by the quantitative echo sounder at several frequencies should be done within the same detection range. By applying the concept of the detection range for the bio-telemetry receiver beams, the number of the beams and the beamwidths can be determined.

어군탐지기, 계량어군탐지기, 바이오텔레메터리등 음향을 이용하여 해중의 어군의 정보를 탐색하는 수산음향계측장치의 탐지범위와 그 음향특성에 대해 검토, 분석할 결과를 요약하면 다음과 같다. 1. 탐지범위는 송 ${\codt}$ 수파기 직경, 송파음의 강도의 증가와 함께 저주파로 이동하여 어군탐지기의 경우 20${\sim}$50kHz, 바이오텔레메터리의 경우 40${\sim}$80kHz에서 최대치를 나타내었다. 2. 탐지거리는 주파수의 증가와 함께 증가하였지만, 고주파에서는 흡수계수의 영향으로 급격하게 감소하였다. 즉, 송 ${\codt}$ 수파기 직경, 송파음의 강도, TS의 증가 효과는 저주파에서는 크고 고주파에서는 적은 경향을 나타내었다. 3. 바이오텔레메터리에서는 어군탐지기와 같은 송파의 지향성 이득을 얻을 수 없기 때문에 탐지체적의 최대치가 수파기의 직경과 함께 미소하게 감소하였다. 4. 탐지범위는 주파수 특성에 의한 어군탐지기의 음향산란신호를 분석하건, 수산음향계측장치의 설계 및 성능평가에 유효하게 사용될 수 있다.

Keywords

References

  1. Bodholt, H., Nes, H., and Solli, H. (1989) : A new echo-sounder system, Proc. Inst. Acoust., 11, 123-130
  2. Clay, C.S. and Medwin, H. (1997) : Acoustical oceanography: Principles and applications, John Wiley and Sons Inc., New York, 146-149
  3. Cushing, D.H. (1973) : Computation with a sonar equation, J.Cons. int. Explor. Mer, 35, 22-26 https://doi.org/10.1093/icesjms/35.1.22
  4. Foot, K.G. (1991) : Acoustic sampling volume, J. Acoust. Soc. Am., 90, 26-36 https://doi.org/10.1121/1.401297
  5. Francois, R.E. and Garrison, G.R. (1982) : Sound absorption based on ocean measurements. Part II: Boric acid contribution and equation for total absorption, J. Acoust. Soc. Am., 72, 1879-1890 https://doi.org/10.1121/1.388673
  6. Furusawa, M(1991) : Designing quantitative echo sounders, J. Acoust. Sco. Am., 90, 26-36 https://doi.org/10.1121/1.401297
  7. Furusawa, M., Asami, T., and Hamada, E. (1999) : Detection range of echo sounders, 3th JSPS Inter. Semi. Sustainable Fishing Technology in Asia towards the 21st Century, TUF International JSPS Project, Tokyo, 207-213
  8. Furusawa, M., Takao, Y., Sawada, K, Oukubo, T., and Yamatani, K(1993) : Versatile echo sounding system using dual beam, Nippon Suisan Gakkaishi, 59, 967-980 https://doi.org/10.2331/suisan.59.967
  9. Hamilton, D., Lozow, J., Suomala Jr, J., and Werner, R(1977) A hvdroacoustic measurement program to examine target quantification methods, Rapp. P. -v. Reun. Cons. int. Explor. Mer, 170, 105-121
  10. Hawkins, A.D. and Urquhart, G.G. (1983) Tracking fish at sea, In: MacDonald, A.G. and Priede, I.G. (eds) Experimental Biology at sea, Academic Press Inc., New York, 103-166
  11. Hedgepeth, J., Fuhriman, D., Geist, D., and Johnson, R. (1998) Fish movement measured by tracking radar-type acoustic transducers, In: Alippi, A and Cannelli, G.B. (eds) Proceedings of the Fourth European Conference on Underwater Acoustics, Rome, 199-204
  12. Jain, S.K. and Reeta Gupta(1997) : Development of a miniature acoustic pinger tag device for tagging on to fish for fish behavioral studies, Indian J. Mar. Sci., 26, 234-237
  13. Kieser, R and Ehrenberg, E. (1990) : An unbiased, stochastic echo-counting model, Rapp. P. -v. Reun, Cons. into Explor. Mer, 189, 65-72
  14. Mitson, R.B. (1988) : Telemetry, Underwater, In: Singh, M.G. (ed.): Systems & Control Encyclopedia. Pergamon. Oxford. 4842-4848
  15. Mitson, R.B. and Young, A.H.(1975) : A survey of the engineering problems of developing small acoustic fish tags. Proc. IERE Conf. Inst. Oceanography, Bangor, Univ. of N. Whales, England, 163-174
  16. Pincock, D.G. and Luke, D.McG. (1975) Systems for telemetry from free-swimming fish. Proc. IERE Conf. Inst. Oceanography, Bangor, Univ. of N. Whales, England, 175-186
  17. Shin, H.O., Hamada, E., and Suzuki, H.(1991) Miniaturization of the pinger for biotelemetry using a biomorph vibrator, Proc. 11th Int. Symp. Biotelemetry, Waseda University, Tokyo, 28-31
  18. Takao, Y. and Furusawa, M.(1995) : Noise measurement by echo integrator, Fish. Sci., 61. 637-640 https://doi.org/10.2331/fishsci.61.637
  19. Voegeli, F.M., Lacroix, G., and Anderson, J.M. (1998) : Development of miniature pingers for tracking Atlantic salmon smolts at sea, Hydrobiologia, 371-372. 35-46
  20. 西村 實(1969) : 魚群探知機の最適周波數に關する研究, 博士論文, 東北大學, 清水
  21. 朴柱三 . 古澤昌彦(2002) : 超音波バイオテレメトリの音響系の評債および設計方法, 日本水學會誌, 68, 334-344
  22. 박주삼(2004) 어류의 행동추적에 의한 SSBL . 핑거동기 바이오텔레메터리 방식과 시스템의 실용성 검증, 한국어업기술학회지 40(1), 78-85