이 작업은 수송체로서 N,N'-bis(2-hydroxybenzyl)-1,3-diaminopropane (L1)과 N,N'-bis(2-hydroxybenzyl)-2,2-dimethyl-1,3-diaminopropane (L2)에 기초한 $Ag^+$ 이온-선택 전극의 제조, 개발 그리고 전압반응에 대해 토의한다. $Ag^+$에 대하여 L1에 기초한 전극은 58.7 mV/dec에 도달하는 안정한 Nernst에 가까운 기울기와 $1.0{\times}10^{-6}M$의 검출한계를 갖는 등급의 최소 다섯가지 순서의 선형범위에서 최적의 전압 반응 특징을 보이는 것을 나타낸다. 제안된 전극은 다른 테스트한 양이온과 비교하여 $Ag^+$에 우위의 선택성을 보였다. 훌륭한 전압 분석적 특징은 중요한 진짜 샘플에서 은의 순도분석의 성공적인 응용을 이끌 것이다. 그리고 그것은 제안된 $Ag^+$-ISE가 측정 능력의 중요한 진보를 보여준다는 것을 나타내고 있다. 그러나 L2에 기초한 전극에 대해서는, 약한 전압 반응 특징들이 전체 실험 과정에서 관측되었다.
콜레스테롤의 신속하고 정확한 새로운 분석방법을 모색하기 위하여 본 연구에서는 전기적 전도성이 우수한 MWCNT를 이용하여 전극을 제작하였고, 여러 가지 효소고정화 방법을 통해 전기화학적 감응도 분석을 실시하였다. MWCNT의 전도성을 향상시키기 위해 아민기를 도입한 MWCNT-$NH_2$를 제조하였고, MWCNT-$NH_2$/GCE에 PB를 점착하여 작업전극을 제조하였다. 제조한 작업전극은 0.5~500 ${\mu}M$$H_2O_2$ 농도 범위에서 농도가 증가함에 따라 전류가 비례적으로 증가하였고, 검출한계는 0.1 ${\mu}M$로 나타나 전극이 높은 감도를 가지고 있음을 확인하였다. 또한 콜레스테롤 검출을 위해 적합한 효소 반응기를 제작하기 위해 담체인 aminopropyl glass beads, CNBr-activated sepharose, Na-alginate, toyopearl beads에 cholesterol oxidase를 고정화시켜 바이오센서의 콜레스테롤 표준용액에 대한 감응도를 측정한 결과, aminopropyl glass beads과 CNBr-activated sepharose는 1~100 ${\mu}M$ 범위에서 선형관계를 보였으며, Na-alginate는 5~50 ${\mu}M$의 범위에서, toyopearl beads는 1~50 ${\mu}M$ 범위에서 선형관계를 나타내었다. 검출한계는 제작된 효소반응기 모두 1 ${\mu}M$로 나타나 콜레스테롤에 대한 높은 검출력을 보여주었으나, 특히 CNBr-activated sepharose와 Na-alginate를 이용한 효소반응기가 높은 coupling efficiency와 감응도를 보여 콜레스테롤 검출을 위한 본 바이오 센서 시스템에 적합한 것으로 나타났다.
광전소자용 투명전극으로 적용하기 위한 초박형 Al 박막에 대해서 기초연구를 수행하였다. 증착 전 챔버(chamber) 내 기저압력은 $3{\times}10^{-7}Torr$이하로 유지하였으며 Ar 불활성 기체의 유입을 통해 작업압력을 $1{\times}10^{-2}Torr$로 상승시켜 증착을 실시하였다. DC 마그네트론 스퍼터링법을 이용하여 유리기판상에 Al 박막의 증착을 실시하였으며, 박막의 두께가 3-12 nm인 Al 박막을 각각 형성하였다. 두께가 7 nm 일 때 면저항은 $135{\Omega}/{\square}$로 측정되었고 7 nm 이상인 두께의 박막은 두께가 증가할 때 면저항이 점진적으로 감소되는 경향을 확인할 수 있었다. 두께가 10 nm인 박막의 측정된 면저항은 $13.1{\Omega}/{\square}$로 두께 7 nm인 박막과 비교하였을 때 약 10배의 차이를 확인할 수 있었다. 두께 6 nm 이하인 박막은 면저항 측정이 불가능하였는데 이는 SEM 분석 결과, 연속박막을 이루지 못 하였기 때문이라고 결론을 내릴 수 있었으며, 두께 12 nm인 박막까지 완전한 연속박막이 형성되지 않았다. 각각의 박막에서 입자의 크기는 선 교차법(line intercept method)을 이용하여 시편당 평균 120개의 입자에 대한 평균값을 측정하였으며, 이론적으로 예상할 수 있는 바와 같이 두께가 증가할수록 입자크기도 비례하여 증가하게 되는 것을 확인할 수 있었다. 가시광선 파장영역 내 투과도의 경우, 3 nm 두께에서 평균 80% 이상의 투과도가 측정된 데 반하여, 4-5 nm 두께에서 평균 60%로 급격하게 감소되기 시작하며 그 이후, 두께 증가에 따라 투과도가 점진적으로 감소되는 경향을 확인할 수 있었다. 또한 Al 박막은 시간의 경과에 따른 표면의 산화가 진행되어 기존에 측정된 면저항보다 10-60%의 면저항이 증가하였는데 이는 두께가 얇을수록 더 산화의 영향을 많이 받기 때문에 나타난 결과로 보인다. 추후 산화방지막 및 빛반사방지막 층을 초박형 Al박막과 함께 Oxide/Metal/Oxide 구조로 형성하여 위와 같은 현상들을 해결하고 박막물성의 증진을 통해 투명전극에 적용을 목표로 한다.
ITO 박막은 현재 차세대 디스플레이인 LCD, PDP, ELD 등의 평판 디스플레이의 화소전극 및 공통전극으로 가장 많이 적용되고 있는 소재이며, 최근에는 태양전지의 투명전극으로 그 용도가 더욱 증가되고 있다. 이러한 소자들의 투명 전도막으로 사용되기 위해서는 가시광선 영역에서 80% 이상의 높은 투과도와 낮은 면 저항을 가져야 한다. 광 투과도와 면 저항은 ITO 박막의 증착조건에 따라 변하게 되는데 본 연구에서는 DC 마그네트론 스퍼터링법을 이용하여 Indium-Tin Oxide (ITO) 박막을 제작하고, 제작된 ITO 박막의 전기적 특성과 광학적 특성을 측정하여 공정조건에 따른 박막의 특성 변화를 평가하였다. 증착 조건은 주로 기판 온도와 증착 시간을 변화시켰다. 본 실험에서는 $In_2O_3$ : $SnO_2$의 조성비가 9:1 비율의 순도 99.99% ITO 타겟을 사용하였으며, coming 1737 glass를 30$\times$30 mm 크기로 가공하여 기판온도와 증착시간을 변화시키면서 ITO 박막을 제조하였다. 예비실험을 통해 인가전력 50W, 초기 진공 $2\times10^{-6}$ Torr, 작업 진공 $3.5\times10^{-2}$ Torr, 기판과 타겟 사이의 거리를 10 cm로 고정하였다. 기판 온도는 히터를 가열하지 않은 상온 ($25^{\circ}C$)에서 $400^{\circ}C$까지의 범위에서 변화시켰고, 증착시간은 5분에서 30분까지의 범위에서 변화시켰다. 증착된 박막의 면 저항 촉정을 위해 4 point probe를 사용하였고, 홀 (hall) 계수 측정기 (HMS-300)를 이용하여 홀 계수를 측정하였으며, 또한 박막의 두께는 $\alpha$-step을 사용하여 측정하였다. ITO 박막의 상분석을 위해 XRD를 사용 하였고, SEM을 이용하여 미세구조를 관찰하였다. 실험 결과로는 기판온도 $400^{\circ}C$, 증착시간 15분 이상에서는 면 저항이 모두 $8\Omega$/$\Box$이하로 낮게 나왔으며, 투과율 또한 모두 80% 이상의 높은 투과도를 보였다. 또한 ITO박막의 전기 전도도는 캐리어 농도와 이동도의 측정을 통해 두 가지 인자들에 의해 비례되는 것을 확인하였다.
스폿용접은 겹침판을 끼우고 가압상태의 전극 사이에 단시간의 대전류를 흘려, 전류가 집중하는 전극 직하의 모재 저항발열과 전극 및 모재의 열전도를 이용해서 판과 판의 접촉부에 안정한 용융부를 형성하는 압접법이다. 스폿용접으로 대표되는 저항용접법의 특징은 작업속도가 빠르고. 대량 생산적인 성격이 강하다는 점이다. 그러나, 용접부의 점검이 중요함에도 불구하고 용접부의 직접 감시가 곤란하여 적절한 검사 방법이 확립되지 않은 결점이 있다. 최근 제조공정 중에 실시간으로 스폿 용접부를 비파괴적인 방법을 이용하여 응력 및 변형상태를 체크하고. 결합을 검출할 수 있는 방법이 강력히 요구되고 있는 실정이다. 스폿 용접부페 광학적으로 레이저 빔을 조사하여 렌즈에 의해 결상되면 결상면상에 작은 입자모양의 반점이 생긴다. 이 반점을 스페클이라 하며 이 스페클에 의해 만들어진 불규칙한 반점모양을 스페클 패턴이라 한다. 이러한 현상은 레이저 빔이 가간섭의 성질을 지니고 있으므로 조사영역에서는 랜덤하지만 시간적으로 정상적인 위상관계에 있는 다수의 광파가 간섭함으로서 발생하는데 이와 같은 줄무늬 간격을 PC 프로그램으로 계산하여 응력을 측정한다. 따라서 본 연구에서는 레이저를 이용한 전자처리식 스페클 패턴 간섭법(ESPI)으로 스폿 용접부의 응력 및 변형률을 측정하여 스트레인 게이지법과 비교 고찰한 결과, ESPI법이 유용함을 알 수 있었으며. 이 방법을 생산 공정에 적용함으로서 생산성 및 품질 향상을 기할 수 있다고 판단된다.
본 연구는 3-전극계와 전기화학적 활성미생물 (EAB)을 이용한 BOD 측정용 바이오센서의 개발에 대한 것이다. 바이오센서의 측정능력 조사를 위하여, 인공폐수 및 실제폐수가 사용되었다. 폐수 시료의 유입조건은 유입속도 2 mL/min, 유입시간 10분, 유입간격은 50분으로 설정하였고, EAB의 전자수용체로 정전압이 적용된 작업전극을 사용하였으며 이때, 정전압기 (potentiostat)를 이용하여 +0.7 V를 인가하여 주었다. 인공폐수와 실제폐수를 이용한 BOD 측정의 정확성 분석결과, BOD 변화에 대해 발생전류 역시 비례적으로 변화하는 것을 확인하였으며 각각 0.99 및 0.98의 높은 상관계수 (BOD vs. Coulombic yield, $BOD_5$ vs. Coulombic yield)를 가지는 것을 확인하였다. BOD (혹은 $BOD_5$) 변화에 대한 반응시간은 30분 이내로 확인되어 실시간 측정에 적합함을 확인할 수 있었다. 이러한 결과들을 토대로 EAB 및 3-전극계를 이용한 폐수의 BOD 측정용 센서의 구성이 가능함을 확인하였다.
본 연구에서는 전 세계적으로 활발히 연구되고 있는 나노바이오센서 분야 중 가장 주목을 받고 있는 LSPR 원리를 이용한 바이오센서를 제작하였다. 금속 나노입자의 국소 표면 플라즈몬 공명현상에 의한 주위환경에 민감하게 반응하는 특성은 고감도 광학형 바이오센서, 화학물질 검출 센서등에 응용된다. 특히 금 나노막대와 같은 1차 나노구조물은 나노막대의 주변 환경 변화에 따라 뚜렷한 플라즈몬 흡수 밴드 변화를 나타냄으로 센서로 적용 했을 때 고감도의 측정이 가능하다. 본 연구에서는 다공성인 알루미늄 양극산화 박막 주형틀을 이용하여 다양한 종횡비를 가지는 금 나노막대를 합성하고, 나노막대 어레이 형태의 박막을 제작하였다. 금 나노막대의 합성은 알루미늄 양극산화막을 사용한 주형제조 방법(template method)을 사용하는 전기화학 증착법을 사용하였다. 우선 부도체인 알루미늄 양극 산화막의 한쪽면을 열증착 장비를 사용하여 금을 증착하여 작업 전극(working electrode)을 형성하였다. 백금 선(platinum wire)을 보조 전극(counter electrode)으로 사용하고 Ag/AgCl 전극을 기준 전극(reference electrode)으로 사용하여 삼전극계(three-electrode system)를 형성하였으며, 금 도금 용액(orotemp 24 gold plating solution, TECHNIC INC.)을 사용하여, 800 mV 전압에서 금 나노 막대를 합성하였다. 금 나노막대의 길이는 테플론 챔버를 통과한 전하량 또는 전기 증착 시간에 비례하여 결정된다. 금 나노막대를 성장시킨 알루미늄 양극산화막을 실리콘 웨이퍼에 은 페이스트를 사용하여 고정시킨 후 수산화나트륨 (NaOH)용액을 사용하여 알루미늄 양극산화막을 녹여내어 수직방향으로 정렬되어 있는 나노 막대 어레이 박막을 제조 하였다. 또한 제작된 금 나노막대 어레이의 광학적 특성을 평가하였다. 본 연구에서와 같이 나노막대를 직경방향으로 측정할 경우, 직경방향의 transverse mode만 측정된다. 금 나노 막대가 알루미늄 양극산화막 안에 포함된 상태로 측정된 금 나노로드 어레이 박막의 광 스펙트럼 분포는 금 나노막대의 가시광영역에서의 흡수 스펙트럼을 측정하였을시 직경 및 길이에 따라 transverse mode의 ${\lambda}$ max (최대 흡광)의 위치가 변화됨을 나타낸다. 실험 결과를 바탕으로 나노막대의 종횡비가 증가함에 따라 흡수 스펙트럼의 transverse mode ${\lambda}$ max가 미약하게 단파장 영역으로 이동하는 것을 확인할 수 있다. 이러한 결과는 원기둥 형태의 금 나노막대의 흡수 스펙트럼에 대한 이론적인 예측과 부합한다. 바이오센서로의 적용 가능성을 확인하기 위하여 자기조립단분자막을 형성하여 항체를 고정하고 CRP에 대한 응답특성을 평가하였다. CRP 항원-항체의 면역반응에 대한 실험 결과 CRP 항원의 농도가 증가함에 따라 넓은 측정범위에서 선형적으로 흡광도가 증가하는 결과를 나타내었으며, CRP 10 fg/ml의 농도까지 검출할 수 있었다. 센서의 선택성을 확인하기 위하여 감지하고자하는 대상물질이 아닌 Tn T 항원을 감지막에 반응시켜 흡광도 변화를 분석하였다. 결과적으로 제작된 센서칩은 선택성을 가지고 측정하고자하는 물질에만 반응함을 확인하였다. 이러한 결과는 다양한 직경을 사용한 부가적인 LSPR현상의 연구에 활용될 수 있을 것이다.
식품 중 잠재적 위험 물질로 작용할 수 있는 BAs의 신속 검출을 위하여 전기전도성이 우수하다고 알려진 MWCNTs의 개질, 작업 전극의 제작, 효소반응기 제작을 통해 바이오센서 시스템을 구성하고 hydrogen peroxide와 주요 BAs 물질에 대한 감응도를 측정하였다. MWCTS의 성질을 향상시키기 위해 아민기를 도입하였고, 이를 FT-IR 스펙트럼을 통해 확인하였다. 아민기를 도입한 MWCNTs를 GCE에 고착시키고 PB 막을 입힌 후 cyclic voltammetry 반응을 비교한 결과, PB/MWCNT-$NH_2$/GCE 전극이 GCE에 비해 산화 전류는 8배 이상, 전체 전류는 25배 이상의 높은 전류 흐름을 보였으며, 미세한 전류 흐름의 측정도 용이해진 것으로 나타났다. 또한, carrier buffer의 pH를 달리하여 제작된 전극의 감응 전류를 비교한 결과, pH 7.0에서 전류의 감응도가 가장 높게 측정되었다. 과산화수소를 주입하여 전극의 성능의 검증한 결과, $0.5 {\mu}M{\sim}100 {\mu}M$ 범위에서 선형관계를 보였으며, 검출 한계는 $0.5{\mu}M$로 측정되었다. Histamine 표준 용액 주입 시 $1{\mu}M{\sim}100{\mu}M$ 범위에서 선형 관계를 나타내었고, tyramine은 histamine에 비해 약 95%, 2-phenylethylamine과 tryptamine은 histamine에 비해 각각 75%, 70% 수준의 감응도를 이용하여 구성된 바이오센서 시스템이 낮은 검출 한계와 높은 수준의 반응 감도를 나타내어 BAs를 측정하는데 좋은 장치임이 확인되었다.
목적: 본 연구의 목적은 건강한 성인을 대상으로 양측상지기능 훈련을 통해서 활성화 되는 대뇌 연결성에서 상상 훈련과 신체적 수행 간에 차이가 있는지를 알아보고자 한다. 연구방법: 연구 대상자는 건강한 성인 1명으로 상상훈련과 신체적 수행 시 EEG 측정이 이루어졌다. 양측상지기능 훈련은 대칭 과제와 비대칭 과제로 구성되었다. 대칭 과제는 양손으로 박스를 잡고 동시에 위의 선반으로 올렸다가 다시 내려놓는 과제이고, 비대칭 과제는 한 손으로 병을 잡고 다른 한 손으로 뚜껑을 여는 과제였다. EEG 전극은 Fp1, Fp2, F3, F4, T3, T4, P3 및 P4에 부착되었다. 데이터 분석은 EEG 전극 쌍 간의 상관 분석을 위해 Cross-Line Mapping을 사용하였다. 결론: 본 연구 결과 대칭 및 비대칭의 양측 상지 과제에서 대뇌 연결성 패턴은 운동과 감각 영역에서 유사한 패턴을 가지는 것으로 나타났다. 또한 본 연구를 통해 양측상지기능 훈련 시 상상훈련보다 신체적 수행에서 대뇌 연결성이 더 높은 상호상관을 갖는다는 것을 확인하였다.
실험실에서 간단하고 값싼 교류 전압전류계를 제작하였다. 이 장치는 직류함수 발진기, lock-in 증폭기로 구성되어 있다. 1M 황산용액에서 백금을 작업전극으로 하여 $1{\times}10^{-3}M$${Fe(CN)_5}^{3-}$의 가역계에서 CV 전압전류곡선과 교류 전압전류곡선을 구한 데이터로부터 이 장치가 잘 작동되는 것으로 증명되었다. 요오드에 대한 정량분석 결과도 구하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.