Determination of Biogenic Amines using an Amperometric Biosensor with a Carbon Nanotube Electrode and Enzyme Reactor

Carbon Nanotube 전극과 효소반응기로 구성된 Amperometric Biosensor를 이용한 Biogenic Amines 검출

  • Kim, Jong-Won (Dept. of Food Science and Nutrition, Kyungpook National University) ;
  • Jeon, Yeon-Hee (Dept. of Food Science and Nutrition, Kyungpook National University) ;
  • Kim, Mee-Ra (Dept. of Food Science and Nutrition, Center for Beautiful Aging, Kyungpook National University)
  • 김종원 (경북대학교 식품영양학과) ;
  • 전연희 (경북대학교 식품영양학과) ;
  • 김미라 (경북대학교 식품영양학과, 장수생활과학연구소)
  • Received : 2010.09.01
  • Accepted : 2010.10.05
  • Published : 2010.10.31

Abstract

Biogenic amines are synthesized by microbial decarboxylation for the putrefaction or fermentation of foods containing protein. Although biogenic amines such as histamine, tyramine, and putrescine are required for many physiological functions in humans and animals, consumption of high amounts of biogenic amines can cause toxicological effects, including serious gastrointestinal, cutaneous, hemodynamic, and neurological symptoms. In this study, a novel amperometric biosensor wasdeveloped to detect biogenic amines. The biosensor consisted of a working electrode, a reference electrode, a counter electrode, an enzyme reactor with immobilized diamine oxidase, an injector, a peristaltic pump and a potentiostat. A working electrode was fabricated with a glassy carbon electrode (GCE) by coating functionalized multi-walled carbon nanotubes (MWCNT-$NH_2$) and by electrodepositing Prussian blue (PB) to enhance electrical conductivity. A sensor system with PB/MWCNT-$NH_2$/GCE showed linearity in the range of $0.5 {\mu}M{\sim}100 {\mu}M$ hydrogen peroxide with a detection limit of $0.5 {\mu}M$. The responses for tyramine, 2-phenylethylamine, and tryptamine were 95%, 75%, and 70% compared to that of histamine, respectively. These results imply that the biosensor system can be applied to the quantitative measurement of biogenic amines.

식품 중 잠재적 위험 물질로 작용할 수 있는 BAs의 신속 검출을 위하여 전기전도성이 우수하다고 알려진 MWCNTs의 개질, 작업 전극의 제작, 효소반응기 제작을 통해 바이오센서 시스템을 구성하고 hydrogen peroxide와 주요 BAs 물질에 대한 감응도를 측정하였다. MWCTS의 성질을 향상시키기 위해 아민기를 도입하였고, 이를 FT-IR 스펙트럼을 통해 확인하였다. 아민기를 도입한 MWCNTs를 GCE에 고착시키고 PB 막을 입힌 후 cyclic voltammetry 반응을 비교한 결과, PB/MWCNT-$NH_2$/GCE 전극이 GCE에 비해 산화 전류는 8배 이상, 전체 전류는 25배 이상의 높은 전류 흐름을 보였으며, 미세한 전류 흐름의 측정도 용이해진 것으로 나타났다. 또한, carrier buffer의 pH를 달리하여 제작된 전극의 감응 전류를 비교한 결과, pH 7.0에서 전류의 감응도가 가장 높게 측정되었다. 과산화수소를 주입하여 전극의 성능의 검증한 결과, $0.5 {\mu}M{\sim}100 {\mu}M$ 범위에서 선형관계를 보였으며, 검출 한계는 $0.5{\mu}M$로 측정되었다. Histamine 표준 용액 주입 시 $1{\mu}M{\sim}100{\mu}M$ 범위에서 선형 관계를 나타내었고, tyramine은 histamine에 비해 약 95%, 2-phenylethylamine과 tryptamine은 histamine에 비해 각각 75%, 70% 수준의 감응도를 이용하여 구성된 바이오센서 시스템이 낮은 검출 한계와 높은 수준의 반응 감도를 나타내어 BAs를 측정하는데 좋은 장치임이 확인되었다.

Keywords

References

  1. Botre F, Botre C, Lorenti G, Mazzei F, Porcelli F, Scibona G (1993) Plant tissue biosensors for the determination of biogenic diamines and of their amino acid precursors: effect of carbonic anhydrase. Sensors and Actuator B 15-16: 135-140.
  2. Carelli D, Centonze D, Palermo C, Quinto M, Rotunno T (2007) An interference free amperometric biosensor for the detection of biogenic amines in food products. Biosens Bioelectron 23: 640-647. https://doi.org/10.1016/j.bios.2007.07.008
  3. Castilho TJ, Sotomayor MPT, Kubota LT (2005) Amperometric biosensor based on horseradish peroxidase for biogenic amine determinations in biological samples. J Pharm Biomed Anal 37(4): 785-791. https://doi.org/10.1016/j.jpba.2004.11.043
  4. Chae KY, Lee CH, Cho TY, Kang MC, Bahn KN, Son YW, Jang MR, Han GH (2005) Biogenic amine contents in Korean commercial foods. The Annual Report of KFDA 9: 115-116.
  5. Duesberg GS, Muster J, Krstic V, Burghard M, Roth S (1998) Chromatographic size separation of single-wall carbon nanotubes. Applied Physics A 67: 117-119. https://doi.org/10.1007/s003390050747
  6. Eom JH, Kim JH, Joo IS, Byun JA, Park YG, Seo DM, Lee EM, Heo OS (2006) Survey of the biogenic amines in commercial fermented alcoholic beverages in Korea. The Annual Report of KFDA 10: 187-188.
  7. Frank S, Poncharal P, Wang ZL, Deheer WA (1998) Carbon nanotube quantum resistors. Science 280: 1744-1746. https://doi.org/10.1126/science.280.5370.1744
  8. Gooding JJ (2005) Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing Electrochim Acta 50: 3049-3060. https://doi.org/10.1016/j.electacta.2004.08.052
  9. Guesdon JL, Chevrier D, Mazié JC, David B, Avrameas S (1986) Monoclonal anti-histamine antibody: preparation, characterization and application to enzyme immunoassay of histamine. Journal of Immunological Methods 87: 69-78. https://doi.org/10.1016/0022-1759(86)90345-5
  10. Guo M, Chen J, Li J, Tao B, Yao S (2005) Fabrication of polyaniline/ carbon nanotube composite modified electrode and its electrocatalytic property to the reduction of nitrite. Anal Chim Acta 532: 71-77. https://doi.org/10.1016/j.aca.2004.10.045
  11. Halasz A, Barath A, Simon-Sarkadi L, Holzapfel W (1994) Biogenic amines and their production by microorganisms in food. Trends Food Sci Technol 51: 42-49.
  12. Joosten HMLJ (1988) The biogenic amine contents of Dutch cheese and their toxicological significance. Neth Milk Dairy J 42: 25-42.
  13. Karube I, Hara K, Satoh I, Suzuki S (1979) Amperometric determination of phosphatidyl choline in serum with use of immobilized phospholipase D and choline oxidase. Anal Chim Acta 106: 243-250. https://doi.org/10.1016/S0003-2670(01)85007-8
  14. Karube I, Satoh I, Araki Y, Suzuki S (1980) Monoamine oxidase electrode in freshness testing of meat. Enzyme Microb Technol 2: 117-120. https://doi.org/10.1016/0141-0229(80)90066-6
  15. Karyakin AA, Gitelmacher OV, Karyakina EE (1994) A highsensitive glucose amperometric biosensor based on Prussian blue modified electrodes. Anal Lett 27: 2861-2869. https://doi.org/10.1080/00032719408000297
  16. Kim MK, Kim JW, Kim MR (2009) Quantitative analysis of ergosterol as a biomarker of mold-contaminated foods using the enzyme biosensor. Korean J Food Cookery Sci 25: 252-259.
  17. Li Z, Chen J, Li W, Chen K, Nie L, Yao S (2007) Improved electrochemical properties of Prussian blue by multi-walled carbon nanotubes. J Electroanal Chem 603: 59-66. https://doi.org/10.1016/j.jelechem.2007.01.021
  18. O'Halloran MP, Pravda M, Guilbault GG (2001) Prussian blue bulk modified screen-printed electrodes for H2O2 detection and for biosensors. Talanta 55: 605-611. https://doi.org/10.1016/S0039-9140(01)00469-6
  19. Padiglia A, Cogoni A, Florss G (1991) Characterization of amine oxidase from Pisum, Lens, Lathyrus and Cicer. Phytochemistry 30: 3895-3897. https://doi.org/10.1016/0031-9422(91)83429-O
  20. Park IS, Kim DK, Shon DH, Cho YJ, Kim NS (1999) Measurement of biogenic amines with a chitopearl enzyme reator. Korean J Food Sci Technol 31: 593-599.
  21. Rodríguez-Méndez ML, Gay M, Apetrei C, De Saja JA (2009) Biogenic amines and fish freshness assessment using a multisensor system based on voltammetric electrodes. Comparison between CPE and screen-printed electrodes. Electrochim Acta 54: 7033-7041. https://doi.org/10.1016/j.electacta.2009.07.024
  22. Rubianes MD, Rivas GA (2003) Carbon nanotubes paste electrode. Electrochem Commun 5:689-694. https://doi.org/10.1016/S1388-2481(03)00168-1
  23. Santhosh P, Manesh KM, Gopalan A, Lee KP (2006) Fabrication of a new polyaniline grafted multi-wall carbon nanotube modified electrode and its application for electrochemical detection of hydrogen peroxide Anal Chim Acta 575: 32-38. https://doi.org/10.1016/j.aca.2006.05.075
  24. Shalaby AR (1996) Significance of biogenic amines to food safety and human health, Food Research International 29: 675-690. https://doi.org/10.1016/S0963-9969(96)00066-X
  25. Taylor SL, Eitenmiller RR (1986) Histamine food poisoning: toxicology and clinical aspects. Crit Rev Toxicol 17: 91-128. https://doi.org/10.3109/10408448609023767
  26. Ten BB, Damink C, Joosten HMLJ, Huis In't VJHJ (1990) Occurrence and formation of biologically active amines in foods. Int J Food Microbiol 11: 73-84. https://doi.org/10.1016/0168-1605(90)90040-C
  27. Wimmerova M, Macholan L (1999) Sensitive amperometric biosensor for the determination of biogenic and synthetic amines using pea seedlings amine oxidase: A novel approach for enzyme immobilisation. Biosens Bioelectron 14: 695-702. https://doi.org/10.1016/S0956-5663(99)00048-2
  28. Yano Y, Miyaguchi N, Watanabe M, Nakamura T, Youdou T, Miyai J, Numata M, Asano Y (1996) Monitoring of beef aging using a two-line flow injection analysis biosensor consisting of putrescine and xanthine electrodes. Food Research International 28: 611-617.
  29. Zhang M, Gong K, Zhang H, Mao L (2005a) Layer-by-layer assembled carbon nanotubes for selective determination of dopamine in the presence of ascorbic acid. Biosens Bioelectron 20: 1270-1276. https://doi.org/10.1016/j.bios.2004.04.018
  30. Zhang P, Wu F, Zhao G, Wei X (2005b) Selective response of dopamine in the presence of ascorbic acid at multi-walled carbon nanotube modified gold electrode. Bioelectrochem 67: 109-114. https://doi.org/10.1016/j.bioelechem.2004.12.004