• Title/Summary/Keyword: 작동 유체

Search Result 550, Processing Time 0.031 seconds

Performance Design of Boiler for Waste Heat Recovery of Engine Coolant by Rankine Steam Cycle (엔진 냉각수 폐열 회수를 위한 랭킨 스팀 사이클용 보일러의 성능 설계)

  • Heo, Hyung-Seok;Bae, Suk-Jung;Hwang, Jae-Soon;Lee, Heon-Kyun;Lee, Dong-Hyuk;Park, Jeong-Sang;Lee, Hong-Yeol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.58-66
    • /
    • 2011
  • A 2-loop waste heat recovery system with Rankine steam cycles for the improvement of fuel efficiency of gasoline vehicles has been investigated. A high temperature loop(HT loop) is a system to recover the waste heat from the exhaust gas, a low temperature loop(LT loop) is for heat recovery from the engine coolant cold relatively. This paper has dealt with a layout of a LT loop system, the review of the working fluids, and the design of the cycle. The design point and the target heat recovery of the LT boiler, a core part of a LT loop, has been presented and analytically investigated. Considering the characteristics of the cycle, the basic concept of the LT boiler has been determined as a shell-and tube type counterflow heat exchanger, the performance characteristics for various design parameters were investigated.

Flow Rate Control Characteristics of a Cavitating Venturi in a Liquid Rocket Propellant Feed System (액체로켓 추진제 공급계에서 캐비테이션 벤튜리의 유량 제어 특성)

  • Cho, Won-Kook;Moon, Yoon-Wan;Kwon, Oh-Sung;Cho, In-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.46-52
    • /
    • 2002
  • Characteristics of flow rate control has been studied for a cavitating venturi adopted in a liquid rocket propellant feed system. Both experiment and numerical simulation have been performed to give about 10% discrepancy of mass flow rate for cavitating flow regime. Mass flow rate is confirmed to be saturated for pressure difference higher than $3{\times}10^5$pa when the upstream pressure is fixed to $22.8{\times}10^5$pa and the downstream pressure is varied. The evaporation amount depends substantially to non-condensable gas concentration. However the mass flow rate characteristics is relatively insensitive to the mass fraction of non-condensable gas. So it reduces by only 2% when the non-condensable gas concentration is increased from 1.5PPM to 150PPM. From the previous comparison the expansion of the non-condensable gas and the evaporation of liquid are verified to gave same effect to the pressure recovery pattern.

Design and Analysis of A New Type of the Motor-Driven Blood Pump for Artificial Heart (인공심장용 전동기구동형 혈액 펌프의 설계 및 해석에 관한 연구)

  • 천길정;김희찬
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.139-150
    • /
    • 1989
  • A new motor-driven blood pump for artificial heart was developed. In this blood pump, a small size, high torque brushless DC motor was used as an energy converter and the motor rolls back and forth on a circular track. This movement of the "rolling-cyliner" causes blood ejection by alternately pushing left or right polyurethane blood sacs. This moving-actuator mechanism could be eliminate two potential problems of other motor-driven artificial hearts such as large size and poor anastomosis for the implantation. Theoretical analyses on the pump efficiency, the temperature rise, and the inflow mechanism were also performed. In a series of mock circulation tests, the theoretical analyses were compared to the measured hemodynamic and mechanical values. The pump system was shown to have sufficient cardiac output (upto 9 L/min), sensitivity to preload, and mechanical stability to be tested as an implantable total artificial heart.ial heart.

  • PDF

A Study on the Ship's ORC Power System using Seawater Temperature Difference (선박의 해수 온도차를 이용한 ORC 발전 시스템에 관한 연구)

  • Oh, Cheol;Song, Young-Uk
    • Journal of Navigation and Port Research
    • /
    • v.36 no.5
    • /
    • pp.349-355
    • /
    • 2012
  • In this study, for the purpose of reduction of $CO_2$ gas emission and to increase recovery of waste heat from ships, the ORC(Organic Rankine Cycle) is investigated and offered for the conversion of temperature heat to electricity from waste heat energy from ships. Simulation is performed with waste heat from the exhaust gasse which is relatively high temperature and cooling sea water which is relatively low temperature from ships. The result shows that 1,000kW power generation is available from exhaust gas and 600kW power generation is available from sea water cooling system. Different fluid is used for simulation of the ORC system with variable temperature and flow condition and efficiency of system and output power is compared.

Numerical Simulation of the Fully Developed Flow and Heat Transfer of a Plate Heat Exchanger Taking into Account Variation in the Corrugation Height (주름높이의 변화를 고려한 판형열교환기의 완전발달유동 및 열전달 수치해석)

  • Moh, Jeong-Hah
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • Numerical analysis has been carried out to investigate the fully developed flow and heat transfer characteristics of a plate heat exchanger. Multi-cell models with an inlet part and outlet part are used to perform the numerical simulation. The plate heat exchanger is characterized by a chevron angle of $20^{\circ}$ and a P/H ratio of 2.0~4.0. The working fluid is water and the Reynolds numbers range from 300 to 1,500. The correlation is given in the form of $f=CRe^m$ for the friction factor and $j=CRe^m$ for the Colburn factor. It is found that the fully developed flow starts from the third cell and the Nusselt number increases with decreasing P/H ratios.

Design of Stable Evaporative Micro-channel Systems Using Expanding Area (확장 면적을 이용한 안정된 증발 마이크로채널 시스템의 설계)

  • Lee, Hee-Joon;Yao, Shi-Chune
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.8
    • /
    • pp.831-838
    • /
    • 2011
  • A growing bubble can be squeezed for water, and it will then encounter flow instability, which reverses toward upstream in straight micro-channels. To reduce the flow instability, a micro-channel that expands at the downstream end has been found to be effective. In the expanding area, a growing bubble will tend to move downstream because the net surface tension force of a vapor-liquid interface is inversely proportional to the local radius of curvature. We propose a static flow instability model and validate it experimentally. Moreover, we apply the local-instability parameter concept to the real design of a stable evaporative micro-channel with an expanding area. Based on the localinstability model, we establish a static design for stable expanding evaporative micro-channels.

A study on the solar assisted heating system with refrigerant as working fluid (냉매를 작동유체로 사용하는 태양열 난방시스템에 관한 연구)

  • Kim, Ji-Young;Ko, Gawng-Soo;Park, Youn-Cheol
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.37-44
    • /
    • 2005
  • An experimental study was conducted to analyze performance of a heating system with variation of control logic of the system. The system uses a solar as heat source and composed with heat pump that uses R-22 as working fluid. The difference between the developed system and the commercially available heating system is working fluid. The solar assisted heating system which was widely distributed in the market uses water as a working fluid. It could be freezing in case of the temperature drops down under freezing point. The anti-freezing fluids such as methyl-alcohol or ethylene-glycol are mixed with the water to protect the freezing phenomena. However, the system developed in this study uses a refrigerant as a working fluid. It makes the system to run under zero degree temperature conditions. Another difference of the developed system compare with commercial available one is auxiliary heating method. The developed system has removed an auxiliary electric heater that has been used in conventional solar assisted heating system. Instead of the auxiliary electric heater, an air source heat exchanger which generally used as an evaporator of a heat pump was adapted as a backup heating device of the developed system. As results, an efficiency of the developed system is higher than a solar assisted heat pump with auxiliary electric heater. The merit of the developed system is on the performance increment when the system operates at a lower solar energy climate conditions. In case of the developed system operates at a normal condition, COP of the solar collector driven heat pump is higher than the air source heat exchanger driven heat pump's.

Study for the Development of a Main Oxidizer Shut-off Valve for Liquid Rocket Engines (발사체 연소기용 산화제 개폐밸브의 핵심요소 기술 개발)

  • Kim, Dohyung;Hong, Moongeun;Park, Jaesung;Lee, Soo Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.113-119
    • /
    • 2013
  • A main oxidizer shut-off valve (MOV) controls the supply of cryogenic liquid oxygen to the combustion chamber of liquid rocket engines by on/off operations. The main subjects to be introduced are not only the valve transient response during valve on/off procedures but also the characteristics of pneumatic and seat/poppet parts as core technologies in the development of the MOV, which is expected to be adopted for the Korea Space Launch Vehicle II. It is shown that the analytical prediction of the transient valve travel is in good agreement with experimental results. Friction and elastic forces on the valve moving part are quantitatively evaluated by structural analysis.

Performance Analysis of 2-Stage Compression and 1-Stage Expansion Refrigeration System using Alternative Natural Refrigerants (암모니아 대체 자연냉매를 이용하는 2단압축 1단팽창 냉동시스템의 성능예측)

  • Roh, Geon-Sang
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.42-47
    • /
    • 2012
  • In this paper, alternative natural refrigerant R290(Propane), R600(Butane), R717(Ammonia), R1270(Propylene) for freon refrigerant R22 were used working fluids for 2-stage compression and 1-stage expansion refrigeration system. The operating parameters considered in this study included evaporation temperature, condensation temperature, subcooling degree, superheating degree, mass flow rate ratio of inter-cooler. The main results were summarized as follows : The COP of 2-stage compression and 1-stage expansion refrigeration system increases with the increasing subcooling degree and mass flow rate ration of inter-cooler, but decreases with the increasing evaporating temperature, condensing temperature and superheating degree. Therefore, subcooling degree, mass flow rate ratio of inter-cooler of 2-stage compression and 1-stage expansion refrigeration system using natural refrigerants have an effect on COP of this system. The COP of natural refrigerants was higher than the COP of freon R22 in this study, so points to be considered are the security, the attached facilities for natural refrigerants than COP.

Flow Analysis for Optimal Design of Small Gear Pump (소형 기어펌프 최적화 설계를 위한 유동해석)

  • Lee, Suk-Young;Kim, Seung-Chul
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.88-96
    • /
    • 2015
  • Gear pump has a simple structure high reliability, easy operation and maintenance, widely used as a source of hydraulic system of hydraulic. In general, the gear pump was designed using variety of variables, the variables through the analysis of the mass flow rate and efficiency. In this paper, three-dimensional flow of the gear pump, in order to produce the optimal design of product, analysis was performed by using commercial software ANSYS v15.0 CFX. And then, combination of design parameters selected by ANSYS was carried out to confirm the simulation result. The efficiency and mass flow rate of the gear pump were studied by varying its rotational speed and the clearance between the gear tip and the housing. In the simulation results, as the rotational speed were increased, the average mass flow rate and efficiency increased. Furthermore, as the clearance between the gear tip and the housing was increased, the average mass flow rate and efficiency decreased.