DOI QR코드

DOI QR Code

Performance Analysis of 2-Stage Compression and 1-Stage Expansion Refrigeration System using Alternative Natural Refrigerants

암모니아 대체 자연냉매를 이용하는 2단압축 1단팽창 냉동시스템의 성능예측

  • Roh, Geon-Sang (Dept. of Refrigeration & Air-Conditioning Engineering, Tongmyong University)
  • 노건상 (동명대학교 냉동공조공학과)
  • Received : 2012.02.22
  • Accepted : 2012.06.26
  • Published : 2012.06.30

Abstract

In this paper, alternative natural refrigerant R290(Propane), R600(Butane), R717(Ammonia), R1270(Propylene) for freon refrigerant R22 were used working fluids for 2-stage compression and 1-stage expansion refrigeration system. The operating parameters considered in this study included evaporation temperature, condensation temperature, subcooling degree, superheating degree, mass flow rate ratio of inter-cooler. The main results were summarized as follows : The COP of 2-stage compression and 1-stage expansion refrigeration system increases with the increasing subcooling degree and mass flow rate ration of inter-cooler, but decreases with the increasing evaporating temperature, condensing temperature and superheating degree. Therefore, subcooling degree, mass flow rate ratio of inter-cooler of 2-stage compression and 1-stage expansion refrigeration system using natural refrigerants have an effect on COP of this system. The COP of natural refrigerants was higher than the COP of freon R22 in this study, so points to be considered are the security, the attached facilities for natural refrigerants than COP.

본 논문에서는 규제 프레온냉매 R22의 대체 자연냉매의 후보인 R290(프로판), R600(부탄), R717(암모니아), R1270(프로필렌)을 작동유체로 사용하는 2단압축 1단팽창 냉동시스템의 성능 특성을 비교하였다. $-20^{\circ}C{\sim}-50^{\circ}C$ 정도의 저온을 얻기 위해 사용되는 2단압축 1단팽창 냉동장치에서의 증발온도, 응축온도, 과열도 및 과냉각도의 변화에 따른 성능계수(COP) 변화를 규명하고자 하였다. 성능특성 규명 결과, 과냉각도 및 중간냉각기에서의 냉매유량 증가에 따라 시스템의 COP는 증가하였으나, 증발온도, 응축온도 및 과열도가 증가할수록 COP는 저하되는 결과를 나타내었다. 또한, 자연냉매를 사용하는 2단압축 1단팽창 냉동시스템의 COP는 규제 프레온냉매 R22를 사용하는 경우보다 높기 때문에 자연냉매를 사용하고자 하는 냉동시스템의 안전성이 확보되면 충분히 대체 냉매로서의 경쟁력이 있을 것으로 판단되었다.

Keywords

References

  1. Bodinus, W. S.." The rise and fall of carbon dioxide systems". ASHRAE, pp. 29-34, (1999)
  2. Donaldson, B. and Nagengast, B. " Heat and cold: mastering the great indoors". ASHRAE; (1994)
  3. Kyoto protocol to the united nations framework convention on climate change, (2005)
  4. Liao, S. and Jakobsen, A., " Optimal heat rejection pressure in transcritical carbon dioxide air conditioning and heat pump system", IIF-IIRSections B and E-Oslo, Norway-1998. pp. 301-310, (1998)
  5. Neksa, P., Rekstad, H., Zakeri, G. R. and Schiefloe, P. A., "$CO_{2}$ heat pump water heater: characteristics, system design and experimental results", International Journal of refrigeration, Vol. 21, No. 3, pp.172-179, (1998) https://doi.org/10.1016/S0140-7007(98)00017-6
  6. Hwang, Y. and Reinhard, R., "Experimental Investigation of the $CO_{2}$ Refrigeration cycle", ASHRAE Transacitions: simpogia, pp. 1219-1227, (1999)
  7. Brown, S. J., Yana-Motta, F. S. and Domanski, A. P., "Comparative analysis of an auto motive air conditioning systems operating with $CO_{2}$ and R134a", International Journal of refrigeration, 25, pp. 19-32, (2002) https://doi.org/10.1016/S0140-7007(01)00011-1
  8. 손창효, "$NH_{3}$- $CO_{2}$를 사용하는 이원 냉동시스템의 성능 분석", 한국가스학회지, Vol.14, No.1, pp.1-7, (2010)
  9. fChart Software Inc. Engineering Equation Solver, (2006)

Cited by

  1. Performance Analysis of a Seawater Ice Machine Applied Two-stage vapor compression refrigeration system for Various Refrigerants vol.20, pp.2, 2016, https://doi.org/10.9726/kspse.2016.20.2.085