• Title/Summary/Keyword: 자율주차시스템

Search Result 15, Processing Time 0.027 seconds

Parking Location Control Algorithm for Self-Driving Cars (자율주행 자동차를 위한 주차 위치 제어 알고리즘)

  • Tariq, Shahroz;Park, Heemin
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.12
    • /
    • pp.654-662
    • /
    • 2016
  • With the advent of autonomous cars, we explored the problems which will soon arise while parking in car parks. These include structure of parking lot suitable for autonomous cars, finding the closest parking slot available, and navigation to the location. We provide an initial solution, wherein we use a central server and the graph of the parking lot to guide cars to the closest parking slots available. Our experiments have shown that the proposed method is effective for the controlled parking for self-driving cars.

Design of Intelligent Parking System for Autonomous Vehicle at the Slant Space (자율주행 차량을 위한 지능형 경사 주차 시스템 설계)

  • Hao, Yang-Hua;Kim, Tae-Kyun;Choi, Byung-Jae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.219-222
    • /
    • 2008
  • Recently, parking problems for an autonomous vehicle have attracted a great deal of attention and have been examined in many papers in the literature. In this paper we design a fuzzy logic based parking system at the slant parking space which is a important part for designing a autonomous parking system. We first design an optimal parking path for the slant space and present the simulation results of the fuzzy logic based parking system.

  • PDF

Design of Intelligent Parking System for Autonomous Vehicle at the Slant Space (자율주행 차량을 위한 지능형 경사 주차 시스템 설계)

  • Hao, Yang-Hua;Kim, Tae-Kyun;Choi, Byung-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.4
    • /
    • pp.506-511
    • /
    • 2008
  • Recently, it is widely progressed that the research of the performance improvement of an intelligent vehicle. Among them, its parking problem has attracted a great deal of attention and have been examined in many papers in the literature. In this paper we design a fuzzy logic based parking system at the slant parking space which is a important part for designing an autonomous parking system. We first design a parking path for the slant space and propose a fuzzy logic based parking algorithm. We present its simulation results and show the effectiveness of the proposed method.

Implementation of Autonomous Parking System Using LiDAR-based Triangulation Method (LiDAR 기반 삼각측량 방식을 활용한 자율주차 시스템 구현)

  • Eun-Ji Hwang;Do-Yeong Kang;Jae-Hyun Moon;Hyeok-Yun Seong;Si Woo Lee;Jae Wook Jeon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.1119-1120
    • /
    • 2023
  • 본 논문에서는 LiDAR 만을 이용한 자율주차 시스템을 제안한다. 목표하는 주차공간 양측에 위치한 차량을 감지하여 주차공간의 앞까지 이동한 후 조향장치를 제어하여 주차를 수행하는 알고리즘을 제시하였다. 또한 2023년도 제1회 성균관대학교 자율주행 SW 경진대회를 수행함으로써 해당 알고리즘의 유효성을 검증하였다.

Development of Unmanned Illegal Parking Control System Based on Marker Recognition (마커 인식 기반의 무인 불법 주차 단속 시스템 개발)

  • Tae-won Kim;Gyeong-ro Park;Chang-min Lee;Jea-hyung Jeong;Myung-hwan Kim;Hongseok Yoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.487-488
    • /
    • 2023
  • 전 세계적으로 도시화가 가속화됨에 따라 도시 내 차량의 수가 지속해서 증가하고 있지만 주차 공간의 부족으로 인해 도심 내 불법주차 문제가 심각해지고 있다. 또한 주차된 차량의 운전자 정보가 노출된 환경으로 인해 개인 정보 유출이 중요한 사회적 문제가 되고 있다. 따라서 본 논문에서는 불법주차 해소와 운전자 개인정보 보호를 동시에 해결하기 위한 자율주행 로봇 시스템을 제안한다. 제안한 방법에서는 정상 주차를 식별하기 방안으로 마커 인식을 적용하였고 ROS 기반 Stella N1을 사용하여 자율주행할 수 있는 로봇을 제작하였다. 또한 전화번호 없이 운전자와 연락을 취할 수 있는 메시지전달 앱을 개발하였다.

  • PDF

A Study on Designing Autonomous Parking Assistance using Fuzzy Controller (퍼지제어기를 이용한 자율주차시스템 구현에 관한 연구)

  • Choo, Yeon-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.70-76
    • /
    • 2013
  • Recently, the performance and function of electrical and electronic system in automotive vehicles is developing at a rapid rate with the advancement of IT technologies. Combined together with micro-controller and sensor technologies, the Vehicle Smart System (VSS) being developed to improve driver's convenience and comfort has been employed to a variety of applications. In addition to the convenience system, the Auto-parking Assistance System (AAS) that is now attracting a new attention has been already applied to some vehicles, but it is currently limited to luxury car models only. In this paper, we present a fuzzy controller that enables autonomous parking assistance without the AAS. The controller can perform the assistance with information provided from moving status, current position and steering angle as one is able to park a car based on his/her experience and knowledge for driving and parking. We have evaluated its performance of the proposed controller by simulation and tested the excellence of the controller by building a model vehicle embedded with the micro-controllers.

Development of Control System for Autonomous Parallel Parking (자율적 평행주차 제어시스템의 개발)

  • 손민혁;부광석;송정훈;김흥섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.176-182
    • /
    • 2003
  • The researches for autonomous vehicle have been implemented in many studies, but most studies were confined to the lane fol1owing and changing. This paper addresses a problem of autonomous lane following parking a nonholonomic vehicle. The algorithm for image processing by the hough transform and controlling a steering angle and speed to park a nonholonomic vehicle is developed. The developed system which integrated the control algorithm for parking and vision algorithm for line traction tested with RC car and verified by the performance of the detection of parking area and the reactive parking without collisions.

Implementation of Autonomous Vehicle Situational Awareness Technology using Infrastructure Edge on a Two- way Single Lane in Traffic-isolated Area (교통소외지역 양방향 단일차선에서 인프라 엣지를 이용한 자율주행 차량 상황 인지 기술 구현)

  • Seongjong Kim;Seokil Song
    • Journal of Platform Technology
    • /
    • v.11 no.6
    • /
    • pp.106-115
    • /
    • 2023
  • In this paper, we propose a sensor data sharing system for the safe and smooth operation of autonomous vehicles on two-way single lanes in traffic-isolated areas and implement the core module, the situational awareness technology. Two-way single lanes pose challenges for autonomous vehicles, particularly when encountering parked vehicles or oncoming traffic, leading to reversing issues. We introduce a system using infrastructure cameras to detect vehicles' approach, enter, and leave on twoway single lanes in real-time, transmitting this information to autonomous vehicles via V2N communication, thereby expanding the sensing range of the autonomous vehicles. The core part of the proposed system is the situational awareness of the two-way single lane using infrastructure cameras. In this paper, we implement this using object detection and tracking technology. Finally, we validate the implemented situational awareness technology using data collected from actual two-way single lanes.

  • PDF

Design of Electronic Control Unit for Parking Assist System (주차 보조 시스템을 위한 ECU 설계)

  • Choi, Jin-Hyuk;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1172-1175
    • /
    • 2020
  • Automotive ECU integrates CPU core, IVN controller, memory interface, sensor interface, I/O interface, and so on. Current automotive ECUs are often developed with proprietary processor architectures. However, demends for standard processors such as ARM and RISC-V increase rapidly for saftware compatibility in autonomous vehicles and connected cars. In this paper, an automotive ECU is designed for parking assist system based on RISC-V with open instruction set architecture. It includes 32b RISC-V CPU core, IVN controllers such as CAN and LIN, memory interfaces such as ROM and SRAM, and I/O interfaces such as SPI, UART, and I2C. Fabricated in 65nm CMOS technology, its operating frequency, area, and gate count are 50MHz, 0.37㎟, and 55,310 gates, respectively.

A Comparative Study of Parking Path Following Methods for Autonomous Parking System (자율 주차 시스템을 위한 주차 경로 추종 방법의 비교 연구)

  • Kim, Minsung;Im, Gyubeom;Park, Jaeheung
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.147-159
    • /
    • 2020
  • Over the last years, a number of different path following methods for the autonomous parking system have been proposed for tracking planned paths. However, it is difficult to find a study comparing path following methods for a short path length with large curvature such as a parking path. In this paper, we conduct a comparative study of the path following methods for perpendicular parking. By using Monte-Carlo simulation, we determine the optimal parameters of each controller and analyze the performance of the path following. In addition, we consider the path following error occurred at the switching point where forward and reverse paths are switched. To address this error, we conduct the comparative study of the path following methods with the one thousand switching points generated by the Monte-Carlo method. The performance of each controller is analyzed using the V-rep simulator. With the simulation results, this paper provides a deep discussion about the effectiveness and limitations of each algorithm.