• Title/Summary/Keyword: 자율조향시스템

Search Result 40, Processing Time 0.033 seconds

Development of autonomous system using magnetic position meter (자기거리계를 이용한 자율주행시스템의 개발)

  • Kim, Geun-Mo;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.343-348
    • /
    • 2007
  • Development of autonomous vehicle system that use magnetic position meter research of intelligence transportation system is progressed worldwide active by fast increase of vehicles. Among them, research about autonomous of vehicles occupies field. And autonomous of vehicles is element that path recognition is basic. Existent magnetic base autonomous system analyzes three-dimensional data of magnet marker to 3 axises magnetic sensor and recognized route. But because using Magnetic Wire and Magnetic Position Meter in treatise that see, measure side lateral error and propose system that driving. And system that compare with system of autonomous vehicles and propose wishes to verify by hardware of that specification and simple algorithm through an experiment that autonomous is available.

Steering Performance Test of Autonomous Guided Vehicle(AGV) Based on Global Navigation Satellite System(GNSS) (위성항법 기반 AGV(Autonomous Guided Vehicle)의 조향 성능 시험)

  • Kang, Woo-Yong;Lee, Eun-Sung;Kim, Jeong-Won;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.180-187
    • /
    • 2010
  • In this paper, a GNSS-based AGV system was designed, and steering tested on a golf cart using electric wires in order to confirm the control efficiency of the low speed vehicle which used only position information of GNSS. After analyzed the existing AGVs system, we developed controller and steering algorithm using GNSS based position information. To analyze the performance of the developed controller and steering algorithm, straight-type and circle-type trajectory test are executed. The results show that steering performance of GNSS-based AGV system is ${\pm}\;0.2m$ for a reference trajectory.

End to End Autonomous Driving System using Out-layer Removal (Out-layer를 제거한 End to End 자율주행 시스템)

  • Seung-Hyeok Jeong;Dong-Ho Yun;Sung-Hun Hong
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.1
    • /
    • pp.65-70
    • /
    • 2023
  • In this paper, we propose an autonomous driving system using an end-to-end model to improve lane departure and misrecognition of traffic lights in a vision sensor-based system. End-to-end learning can be extended to a variety of environmental conditions. Driving data is collected using a model car based on a vision sensor. Using the collected data, it is composed of existing data and data with outlayers removed. A class was formed with camera image data as input data and speed and steering data as output data, and data learning was performed using an end-to-end model. The reliability of the trained model was verified. Apply the learned end-to-end model to the model car to predict the steering angle with image data. As a result of the learning of the model car, it can be seen that the model with the outlayer removed is improved than the existing model.

Minimizing in Tracking Error Using Neural Network for Free-ranging Automated Guided Vehicle (신경회로망을 이용한 자율주행 반송차의 경로추종오차의 최소화)

  • 정인철;곽윤근;김수현;이두용;김동규
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.330-340
    • /
    • 1998
  • 자율주행 반송차가 주어진 경로를 따라 주행 할 때 주행면의 불균일성과 같은 외란요인과 자율반송차 시스템 자체의 비선형성 등으로 인하여 원치 않는 경로추종오차가 발생하게 되는데 본 연구에서는 이러한 경로추종오차를 최소화하기 위해서 신경회로망을 이용한 경로추종 오차 보상방법을 제안한다. 본 방법에서는 신경회로망을 통하여 조향각 보상량을 제공하므로써 경로추종오차를 보상한다. 신경망은 다층 퍼셉트론을 채용하였으며 역전파 알고리즘의 최급강하규칙(Gradient descent rule)을 이용하여 학습을 수행하였다. 본 제안에서는 학습오차를 경로추종오차로부터 정의하므로써 경로추종오차가 최소화되록 신경회로망을 학습시켰다. 제안된 방법의 타당성은 다양한 경로에 대한 모의실험 및 실제 실험을 통하여 검증하였다.

  • PDF

Development of Autonomous Steering Platforms for Upland Furrow (노지 밭고랑 환경 적용을 위한 자율조향 플랫폼 개발)

  • Cho, Yongjun;Yun, Haeyong;Hong, Hyunggil;Oh, Jangseok;Park, Hui Chang;Kang, Minsu;Park, Kwanhyung;Seo, Kabho;Kim, Sunduck;Lee, Youngtae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.70-75
    • /
    • 2021
  • We developed a platform that was capable of autonomous steering in a furrow environment. It was developed to autonomously control steering by recognizing the furrow using a laser distance, three-axis tilt, and temperature sensor. The performance evaluation indicated that the autonomous steering success rate was 99.17%, and it was possible to climb up to 5° on the slope. The usage time was approximately 40 h, and the maximum speed was 6.7 km/h.

Implementation of Autonomous Parking System Using LiDAR-based Triangulation Method (LiDAR 기반 삼각측량 방식을 활용한 자율주차 시스템 구현)

  • Eun-Ji Hwang;Do-Yeong Kang;Jae-Hyun Moon;Hyeok-Yun Seong;Si Woo Lee;Jae Wook Jeon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.1119-1120
    • /
    • 2023
  • 본 논문에서는 LiDAR 만을 이용한 자율주차 시스템을 제안한다. 목표하는 주차공간 양측에 위치한 차량을 감지하여 주차공간의 앞까지 이동한 후 조향장치를 제어하여 주차를 수행하는 알고리즘을 제시하였다. 또한 2023년도 제1회 성균관대학교 자율주행 SW 경진대회를 수행함으로써 해당 알고리즘의 유효성을 검증하였다.

An algorithm for autonomous driving on narrow and high-curvature roads based on AVM system. (좁고 곡률이 큰 도로에서의 자율주행을 위한 AVM 시스템 기반의 알고리즘)

  • Han, Kyung Yeop;Lee, Minho;Lee, SunWung;Ryu, Seokhoon;Lee, Young-Sup
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.924-926
    • /
    • 2017
  • 본 논문에서는 좁고 곡률이 큰 도로에서의 자율 주행을 위한 AVM 시스템 기반의 알고리즘을 제안한다. 기존의 전방을 주시하는 모노/스테레오 카메라를 이용한 차선 인식 방법을 이용한 자율주행 알고리즘은 모노/스테레오 카메라의 제한된 FOV (Field of View)로 인해 좁고 곡률이 큰 도로에서의 자율 주행에 한계가 있다. 제안하는 알고리즘은 AVM 시스템을 기반으로 하여 이 한계를 극복하고자 한다. AVM 시스템에서 얻은 영상을 차선의 색상 정보를 이용해 차선의 영역을 이진화 한다. 이진화 영상으로부터, 차량의 뒷바퀴 주변의 관심영역을 시작으로 재귀적 탐색법을 이용하여 좌, 우 차선을 검출한다. 검출된 좌, 우 차선의 중앙선을 차량의 경로로 삼고 조향각을 산출해 낸다. 제한하는 알고리즘을 실제 차량에 적용시킨 실험을 수행하였고, 운전면허 시험장의 코스를 차선의 이탈없이 주행 가능함을 실험적으로 확인하였다.

Application of CNN for steering control of autonomous vehicle (자율주행차 조향제어를 위한 CNN의 적용)

  • Park, Sung-chan;Hwang, Kwang-bok;Park, Hee-mun;Choi, Young-kiu;Park, Jin-hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.468-469
    • /
    • 2018
  • We design CNN(convolutional neural network) which is applicable to steering control system of autonomous vehicle. CNN has been widely used in many fields, especially in image classifications. But CNN has not been applied much to the regression problem such as function approximation. This is because the input of CNN has a multidimensional data structure such as image data, which makes it is not applicable to general control systems. Recently, autonomous vehicles have been actively studied, and many techniques are required to implement autonomous vehicles. For this purpose, many researches have been studied to detect the lane by using the image through the black box mounted on the vehicle, and to get the vanishing point according to the detected lane for control the autonomous vehicle. However, in detecting the vanishing point, it is difficult to detect the vanishing point with stability due to various factors such as the external environment of the image, disappearance of the instant lane and detection of the opposite lane. In this study, we apply CNN for steering control of an autonomous vehicle using a black box image of a car.

  • PDF