• Title/Summary/Keyword: 자유단공진주시험

Search Result 13, Processing Time 0.03 seconds

Evaluation of Engineering Properties of CLSM using Weathered Granite Soils (화강풍화토를 이용한 CLSM의 공학적 특성평가)

  • Lim, Yu-Jin;Seo, Chang-Beom
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.19-26
    • /
    • 2009
  • In this study, flowable backfill made with weathered granite soil is tested to provide basic engineering properties that can be used as design input to overcome settlement problems in road pavement due to low stiffness of backfill which is generated by porosity of the soil. For design purpose, a proper mixing ratio is developed first. Then several test methods including FF/RC, PMT and LDWT including axial compression test are adapted for checking stiffness and measuring axial strength of the material separately that can be used for design values.

Evaluation on the Mechanical Properties of Multi-Functional Asphalt Pavements for Surface Course (다기능 표층용 아스팔트 혼합물의 역학적 특성 평가)

  • Lee, Kwan-Ho;Ham, Sang-Min;Kim, Seong-Kyum;Lee, Byung-Sik
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05a
    • /
    • pp.292-295
    • /
    • 2011
  • 본 논문에서는 배수성(저소음)포장을 포함하는 2-Layer 아스팔트 포장의 상부층과 하부층의 역학적인 특성을 평가하는데 목적이 있다. 연구 방법으로는 슈퍼페이브 배합설계로 2-Layer 아스팔트 포장의 상 하부층 시편을 제작하였으며, 시편 상부층의 최대공칭치수는 4.75mm이고 하부층의 최대공칭치수는 13mm이다. 이 시편에 대한 기본 물성 시험 실시 후 마샬 안정도 시험에 대한 안정도와 흐름값을 평가하였다. 그리고 상부층과 하부층의 자유단 공진주 시험을 통해 탄성계수(E)를 측정하였고, 비파괴 시험법인 슈미트해머(Schmidt hammer)를 이용해 반발경도를 측정한 후 강도를 추정하였다. 또한 일축압축시험으로 측정된 압축강도로 탄성계수($E_{50}$)를 계산하였다. 마지막으로 각각의 역학적 시험을 통해 얻어진 결과값으로 강도(qu)와 탄성계수 ($E_{50}$)의 상관관계와 추정식으로 구한 강도와 일축압축강도 시험으로 얻어진 강도와의 상관관계를 분석하였고, 자유단 공진주 시험의 탄성계수(E)값과 일축압축시험의 결과로 얻어진 탄성계수($E_{50}$)의 상관관계를 분석하였다.

  • PDF

Effects of Imperfect Fixing at the Active End of Spring-top Resonant Column Apparatus (주동단에 반력으프링이 부착된 공진우 시험기에서 우동단 불완전 고정의 영향)

  • 민덕기
    • Geotechnical Engineering
    • /
    • v.6 no.1
    • /
    • pp.7-14
    • /
    • 1990
  • The two degree of freedom model is proposed to study the effects of imperfect fixing at the active end of spring-top resonant column apparatus. A computer program using the SYMPHONY spreadsheet is developed to calculate the dimensionless frequency, F, from which modulug can be determined. It is found that the effect of reaction mass through the parameter Tr on dimensionless frequency, F, can not be ignored if Tr$\leq$20. As To increases, the variation of F increases. But for Tr$\geq$ 20, the effect of To becomes small. It is recommended that T. be greater than 20 if single degree of freedom model is rosed to determine modulus of soil. It also is found that damping ratios of specimen and apparatus do not strongly affect the dimensionless frequency, F.

  • PDF

Evaluation of Dynamic Properties of Crushed Stones Used as Reinforced Trackbed Foundation Materials Using Midsize Resonant Column Test apparatus (중형 공진주 시험기를 이용한 국내 쇄석 강화노반재료의 동적특성 평가)

  • Lim, Yujin;Lee, SeongHyeok;Lee, Jinwoog;Cho, Hojin
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.5
    • /
    • pp.476-484
    • /
    • 2012
  • In this study, a mid-size RC test apparatus equipped with analyzing program is developed that can test samples up to D=10cm diameter and H=20cm height which is larger than usual samples of D=5cm and H=10cm used mostly in practice. Thus, crushed stones with larger grains up to 38mm in diameter used mostly in Korea as reinforced trackbed materials in track construction could be considered effectively than conventionally used RC apparatus for evaluation of the dynamic properties of the materials by using the newly developed RC apparatus. The RC test apparatus was designed and assembled based on the concept of fixed-free fixity conditions and driving mechanism proposed by Stokoe. Using the developed RC test apparatus, three types of representative crushed reinforced trackbed materials were tested in order to get the dynamic properties of the materials such as $G/G_{max}$ reduction curves and damping ratio D. For comparison purpose, a small RC test apparatus has been used to test the same materials.

The Effect of Confining Pressure on Modulus of Soils at Low Confining Pressures (낮은 구속응력 단계에서 지반의 탄성계수에 대한 구속응력의 영향)

  • 권기철
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.4
    • /
    • pp.57-63
    • /
    • 2004
  • The range of stresses experienced in subgrade soils and subbase materials in pavement under working stress conditions is below about 150㎪. Therefore, the deformational characteristics of soils at low confining pressures are important properties in the analysis and design of pavement system. Subgrade soils and subbase materials were collected from the actual pavement projects for testing. To evaluate the effect of confining pressure on modulus of those materials at low confining pressures, RC and FFRC tests were performed. Interestingly, the relationship between modulus of soils and confining pressure is more appropriate in linear space than in logarithm space at low confining pressure. Based on those results, new model fur evaluating the effects of confining pressure on modulus at low confining pressures was proposed.

Development and Verification of a Large Scale Resonant Column Testing System (대형 공진주시험기의 개발 및 검증)

  • Kim, Nam-Ryong;Ha, Ik-Soo;Shin, Dong-Hoon;Kim, Min-Seub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6C
    • /
    • pp.295-304
    • /
    • 2012
  • In this study, a resonant column testing system which is the largest in Korea has been developed to evaluate the dynamic deformation characteristics of coarse granular geomaterials, and the performance and the applicability of the testing system have been verified. The system has been developed as a typical Stokoe type device whose boundary conditions are fixed bottom and free top with additional mass, and can adopt a large specimen with 200 mm in diameter and 400 mm in height. The driving and measurement instruments are configured as high performance and precision systems, hence the automated testing system is appropriate to drive enough stress and to measure the behavior precisely for the test in practical manner. The dynamic response of the mechanical components and the applicability of the system have been evaluated using metal specimens as well as polyurethane specimens, and its precision was verified by comparing its results with those from other equipment and/or methods. To confirm the applicability of the large system for coarse geomaterials, the resonant column test results from both large and normal scale apparatus for the same material were compared and it was found that the result can be partially affected by scale. Finally, the dynamic deformation characteristics of coarse geomaterial which is used for construction of large dam was evaluated using the large system and its practicality could be confirmed.

Analysis of Shear Modulus(G)-Shear Strain(γ)-Degree of Saturation(S) Characteristics of Compacted Subgrade Soil used as Railway Trackbed (다짐된 궤도 흙노반 재료의 전단탄성계수(G)-전단변형률(γ)-포화도(S) 관계특성 분석)

  • Choi, Chan Yong;Lee, Seong Hyeok;Lim, Yu Jin;Kim, Dae Sung;Park, Jae Beom
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.2
    • /
    • pp.127-138
    • /
    • 2015
  • It is important to evaluate the stiffness characteristics of compacted subgrade soil under track that is loaded dynamically. Using a mid-size Resonant Column test apparatus, normalized shear modulus and shear modulus variation with changing of confining pressure were investigated with change of degree of saturation (DOS). From an analysis of the test results, it was verified that the maximum shear modulus decreased with increases of DOS. However, normalized shear modulus increased with increases of DOS. Using the test results, a relation of G~${\gamma}$~DOS can be constructed and characterized. In the future, by performing tests with soils used as trackbed broadly in the field, a prediction model for DOS~G~${\gamma}$ can be proposed.

Development of whole Strain Range Constitutive Model Considering Deformational Characteristics of Subbase Materials in Korea (국내 보조기층 재료의 변형특성을 고려한 전체 변형률 영역의 구성모델 개발)

  • Kweon, Gi-Chul
    • International Journal of Highway Engineering
    • /
    • v.6 no.3 s.21
    • /
    • pp.65-77
    • /
    • 2004
  • Deformational characteristics of subbase materials are important parameters in the mechanistic design of pavement. The subbase materials are mostly unbound granular materials in Korea, and seven representative subbase materials were collected for testing from the pavement construction sites. To evaluate the deformational characteristics of subbase materials, RC/TS, TX and FF-RC tests were performed. The effects of various variables on modulus were studied. The variation in the modulus with number of loading cycles and loading frequency are very small and can be ignored in a practical sense. The modulus of subbase materials were significantly affected by confining pressure and strain level. The representative modulus reduction curve and constitutive models for Korean subbase materials were suggested.

  • PDF

The Strength Properties of Permeable Hot Mix Asphalt for Surface Course (배수성 아스팔트 표층용 혼합물의 강도특성)

  • Lee, Kwan-Ho;Ham, Sang-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3296-3301
    • /
    • 2011
  • The Porous pavement gains popularity because of several benefits. It is to minimize hydro-planning condition, spraying condition, and splash to increase friction resistance, and decrease noise. Also, other studies showed that it is important to have appropriate porosity to reduce noise and water flush. The purpose of this study is an evaluation on the mechanical properties of asphalt pavements for surface course. In this study the specimen was manufactured using the Gyratory compactor in order to compact the strengthened surface course that involved the two-layer pavement. This study is conducted by using Marshall stability test(KS F 2377), Impact resonance test, Schmidt hammer test(KS F 2730), and the Uniaxial compression test(KS F 2314). Using the Uniaxial compression test and Schmidt hammer test, the values of compressive strength and bearing capacity were measured, and the modulus of elasticity for each specimen was respectively measured using the Uniaxial compression test, Impact Resonance test.

A Prediction Model of Resilient Modulus for Recycled Crushed-Rock-Soil-Mixture (재활용 암버력 - 토사의 회복탄성계수 예측 모델)

  • Park, In-Beom;Mok, Young-Jin
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.147-155
    • /
    • 2010
  • A prediction model of resilient modulus($E_R$) was developed for recycled crushed-rock-soil mixtures. The evaluation of $E_R$, using the "orthodox" repeated loading tri-axial test, is not feasible for such a large-size gravelly material. An alternative method was proposed hereby using the subtle different modulus called nonlinear dynamic modulus. The prediction model was developed by utilizing in-situ measured shear modulus($G_{max}$) and its reduction curves of modeled materials using the large free-free resonant column test. A pilot evaluation of the model parameters was carried out for recycled crushed-rock-soil-mixture at a highway construction site near Gimcheon, Korea. The values of the model parameters($A_E,\;n_E,\;{\varepsilon}_r\;and\;{\alpha}$) were proposed as 9618, 0.47, 0.0135, and 0.8, respectively.