• Title/Summary/Keyword: 자원 절감

Search Result 640, Processing Time 0.03 seconds

Trends and Perspective for Eco-friendly Composites for Next-generation Automobiles (차세대 자동차용 친환경 복합재료의 동향 및 전망)

  • Eunyoung Oh;Marcela Maria Godoy Zuniga;Jonghwan Suhr
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.115-125
    • /
    • 2024
  • As global issues and interest in the environment increase, the transition to eco-friendly materials is accelerating in the automobile industry. In the automotive industry, eco-friendly composite materials are mainly used in various interior and exterior components, reducing the reliance on traditional petroleum-based materials. In particular, natural fiber composites help reduce fuel consumption and greenhouse gas emissions by making vehicles lighter. Additionally, they boast superior thermal properties and durability compared to non-recyclable composite materials, making them suitable for automotive interior parts. Furthermore, reduced production costs and sustainability are key advantages of natural fiber composites. The eco-friendly composites market is expected to grow to $86.43 billion at a CAGR of 15.3% from 2022 to 2030, and the natural fiber composites market is predicted to grow at a CAGR of 5.3% from 2023 to 2028 to $424 million. In this review paper, we explore research trends in nextgeneration natural fiber composite materials for automobiles and their application in the actual automobile industry.

A Study on the Performance of Recycled Asphalt Pavement using Hot Recycling Plant (재생 아스팔트 포장의 공용성능 연구)

  • Kim, In-Soo;Suh, Young-Chan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.112-118
    • /
    • 2011
  • The recycled asphalt concrete has gotten increasing attention due to the environmental issues. The volume of reclaimed asphalt has increased significantly for last few years because of city remodeling, pavement maintenance, utility excavation, and road widening. Considering the value of reclaimed asphalt, it is rather used for the recycled asphalt concrete than it is used for fill and cover up material instead of soil. This research will be a supplements incomplete issues from existing research results and suggests the quality control guideline for recycled asphalt concrete and upcoming laws. As the first step of research, the trial construction of RAP(Recycled Asphalt Pavement) performed in expressway construction sites. These trial construction sites have been checked every years. And another construction sites studied and selected for more deeper performance check of RAP. For this checks, we used automatic pavement survey equipment and computerized analysis tools. Also, DSR(Dynamic Shear Rheometer) was used for the fatigue life calculation of binder blends(RAP and virgin binder). As a consequence of this research, the application of recycled asphalt provides good enough quality for highway construction. The preceeding literatures reviewed shows that the asphalt rejuvenator are used in many countries but that type of chemical agent are not used in Korea. By using the data of trial construction and mix design in Chongwon-Sangju construction lane, the surface and base courses consisted with the 10% and 30% rap mix asphalt section maintains good performance for up to 7 years. Through the performance check and laboratory tests(DSR), the quality control and mixture's low temperature prevention are the important factor and chemical agent necessary for increasing the fatigue life of RAP binder.

  • PDF

Major Issues of Post-Kyoto Negotiation and Their Implications : An Economic Analysis by Using a CGE Model (Post-Kyoto 협상의 주요 쟁점사항과 시사점 : 연산일반균형(CGE)모형을 활용한 경제적 분석)

  • Lim, JaeKyu
    • Environmental and Resource Economics Review
    • /
    • v.18 no.3
    • /
    • pp.457-493
    • /
    • 2009
  • This paper evaluates major issues of Post-Kyoto negotiation of UNFCCC and conducted economic analysis by utilizing a computable general equilibrium(CGE) model(GTEM-KOR). It points three major agendas of the negotiation to be settled : (1) return of the US to GHG abatement commitment; (2) participation of developing countries in GHG abatement commitment; and (3) development of a comprehensive approach for post-Kyoto period. It also emphasizes the differentiation of developing countries and the type and strength of commitment as the negotiation issues for settlement of those agendas. The analysis by using GTEM-KOR shows the differentiation between developing countries based on per capita GDP and/or per capita emissions is inefficient in terms of global GHG emission reduction and it will exposure Korea to strong pressure of commitment relative to other developing countries. It also shows that the participation of developing countries such as China and India is one of the most important factors for the environmental effectiveness of the Post-Kyoto regime. It emphasizes that the relative strength of commitment and the scope of country participation rather than type of commitment are major components determining the economic and environmental effectiveness of the Post-Kyoto regime.

  • PDF

Feasibility Study on Recycling of Concrete Waste from NPP Decommissioning Through Literature Review (기존 문헌 분석을 통한 원전 콘크리트 해체 폐기물 재활용 가능성에 대한 연구)

  • Cheon, Ju-Hyun;Lee, Seong-Cheol;Kim, Chang-Lak;Park, Hong-Gi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.115-122
    • /
    • 2018
  • In this paper, the feasibility of recycling concrete waste as a method to reduce final disposal amount of wastes generated through decommissioning of nuclear power plant has been analyzed based on experimental results of existing literature. When recycled concrete waste was used as recycled aggregate, it was investigated through literature that the concrete strength decreased by 30~40% depending on the mixing ratio. It was also investigated that concrete with recycled aggregate can be used as a structural material when the quality of recycled aggregate is well managed since no significant problem was found. When recycled cement produced from concrete waste was used, the strength of concrete or mortar decreased considerably as the recycled cement content increased. Therefore, it can be concluded that concrete or mortar with recycled cement can be used as a filling material for final disposal of large radioactive waste rather than for structural use. This paper is expected to be useful for reduction on disposal volume and decommissioning cost for nuclear power plants such as Kori 1.

Chemical Remediation and Recirculation Technologies of Wastewater from Metal-Contaminated Soil Washing (금속오염(金屬汚染) 토양세척(土壤洗滌) 폐수(廢水)의 화학적(化學的) 처리(處理)와 재순환(再循環) 기술(技術))

  • Lim, Mi-Hee;Abn, Ji-Whan
    • Resources Recycling
    • /
    • v.20 no.3
    • /
    • pp.28-39
    • /
    • 2011
  • This review investigated theoretical principals and practical application examples on recirculation system of soil washing-wastewater treatment-treated water recycling. As for technologies which have attempted to remediating metals-contaminated soil in and around country, there are reactive barriers, encapsulation, solidification/stabilization, soil washing, and phytoremediation. Among those, in particular, this review covers soil washing technology which physicochemically removes contaminants from soils. The major drawbacks of this technology are to generate a large amount of wastewater which contains contaminants complexed with ligands of washing solution and needs additional treatment process. To solve these problems, many chemical treatment methods have been developed as follows: precipitation/coprecipitation, membrane filtration, adsorption treatment, ion exchange, and electrokinetic treatment. In the last part of the review, recent research and field application cases on soil washing wastewater treatment and recycling were introduced. Based on these integrated technologies, it could be achieved to solve the problem of soil washing wastewater and to enhance cost effective process by reducing total water resources use in soil washing process.

Technology Trends of Cathode Active Materials for Lithium Ion Battery (리튬이온 배터리용 정극재료(正極材料)의 기술동향(技術動向))

  • Hwang, Young-Gil;Kil, Sang-Cheol;Kim, Jong-Heon
    • Resources Recycling
    • /
    • v.21 no.5
    • /
    • pp.79-87
    • /
    • 2012
  • With the increasing size and universalization of lithium-ion batteries, the development of cathode materials has emerged as a critical issue. The energy density of 18650 cylindrical batteries had more than doubled from 230 Wh/l in 1991 to 500 Wh/l in 2005. The energy capacity of most products ranges from 450 to 500Wh/l or from 150 to 190 Wh/kg. Product developments are focusing on high capacity, safety, saved production cost, and long life. As Co is expensive among the cathode active materials $LiCoO_2$, to increase energy capacity while decreasing the use of Co, composites such as $LiMn_2O_4$, $LiCo_{1/3}N_{i1/3}Mn_{1/3}O_2$, $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$, and $LiFePO_4$-C (167 mA/g) are being developed. Furthermore, many studies are being conducted to improve the performance of battery materials to meet the requirement of large capacity output density such as 500Wh/kg for electric bicycles, 1,500Wh/kg for electric tools, and 4,000~5,000Wh/kg for EV and PHEV. As new cathodes active materials with high energy capacity such as graphene-sulfur composite cathode materials with 600 Ah/kg and the molecular cluster for secondary battery with 320 Ah/kg are being developed these days, their commercializations are highly anticipated.

Thermal Conductivity Effect of Heat Storage Layer using Porous Feldspar Powder (다공질 장석으로 제조한 축열층의 열전도 특성)

  • Kim, Sung-Wook;Go, Daehong;Choi, Eun-Kyeong;Kim, Sung-Hwan;Kim, Tae-Hyoung;Lee, Kyu-Hwan;Cho, Jinwoo
    • Economic and Environmental Geology
    • /
    • v.50 no.2
    • /
    • pp.159-170
    • /
    • 2017
  • The temporal and spatial temperature distribution of the heat storage mortar made of porous feldspar was measured and the thermal properties and electricity consumption were analyzed. For the experiment, two real size chambers (control model and test model) with hot water pipes were constructed. Two large scale models with hot water pipes were constructed. The surface temperature change of the heat storage layer was remotely monitored during the heating and cooling process using infrared thermal imaging camera and temperature sensor. The temperature increased from $20^{\circ}C$ to $30^{\circ}C$ under the heating condition. The temperature of the heat storage layer of the test model was $2.0-3.5^{\circ}C$ higher than the control model and the time to reach the target temperature was shortened. As the distance from the hot water pipe increased, the temperature gap increased from $4.0^{\circ}C$ to $4.8^{\circ}C$. The power consumed until the surface temperature of the heat storage layer reached $30^{\circ}C$ was 2.2 times that of the control model. From the heating experiment, the stepwise temperature and electricity consumption were calculated, and the electricity consumption of the heat storage layer of the test model was reduced by 66%. In the cooling experiment, the surface temperature of the heat storage layer of the test model was maintained $2^{\circ}C$ higher than that of the control model. The heat storage effect of the porous feldspar mortar was confirmed by the temperature experiment. With considering that the time to reheat the heat storage layer is extended, the energy efficiency will be increased.

A study on the efficiency measurement of University's technology transfer by DEA model (DEA 모형을 이용한 국내 대학의 기술이전 효율성 분석)

  • Jin, Gyung-Mi;Yoon, Byun-Gun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2558-2569
    • /
    • 2012
  • While the cost of technology development is increased, the life cycle of products and services that have been developed has become progressively shorter. Open innovation have been increasing by company as a strategy to respond to the rapidly changed market. Technology transfer from universities is one of the typical means of technological innovation. Although a university has invested significant resources in R&D, the results has been neglected. Therefore, at the moment, research is needed about the outcomes and efficiency of technology transfer at universities. In the previous research, since most of studies focus on the analysis of factors that influence the outcome of technology transfer, in this study, targeting domestic universities, the efficiency of technology transfer at the university was analyzed. In addition, differences in the efficiency of different types of university is verified. Consequently, universities specializing in technology and industry has high-efficiency than the others. There is no significant difference between the groups of universities whether or not to participate in Technology Licensing Office(TLO). More efforts are required for successful results of TLO in Korea. This study is expected to be able to provide reasonable indicators on technology transfer for further research.

Reuse Technology Development and Economic Evaluation of Dyeing Wastewater Treatment Sludge (폐수처리슬러지의 재활용기술개발 및 경제성 평가 -B염색조합을 중심으로-)

  • 임재호;이정연
    • Resources Recycling
    • /
    • v.9 no.1
    • /
    • pp.36-43
    • /
    • 2000
  • This study was carried out for treatment and reuse of inorganic sludge from Fenton process at B dyeing wastewater treatment plant. The parameters for pilot-scale treatment system were derived from the results of this study. It was found that $COD_{cl}$ of the treated effluent became lower than 100 mg/l approximately on the optimal reaction condition. 2nd sludge which was generated after redissolving sludge was analyzed, and it showed that reduction ratio of ash in 2nd sludge and total dry sludge weight in comparison with current sludge were 85% and 65%. Also Fe salt in sludge was redissolved about 90~95% of initial Fe by weight. It was estimated almost ₩350,000,000 for sludge reuse process. It was estimated saving of about ₩1,300,000 per day (₩420,000,000 per year) in operating cost based on 30,000 $m^3$/d treatment, which these were about ₩430,000 per day in chemical, ₩1,100,000 per day in sludge transportation and ₩200,000 per day in equipment maintenance. Payback period with interest charge for investment cost was estimated about 10.5 months. Also, net present value (NPV) was ₩792,000,000 and internal rat of return (IRR) was about 110%.

  • PDF

Strategy and Development of Recycling Technology for End-of-Life Vehicles(ELVs) in Germany

  • Kim, Jae-Ceung
    • Resources Recycling
    • /
    • v.14 no.3
    • /
    • pp.16-36
    • /
    • 2005
  • The quantity of passenger cars in industrial countries has been significantly increased in recent years. According to prognoses, this tendency is likely to continue in the forthcoming future. As a direct consequence, an increase of End-of Life-Vehicles (ELV) will confront us with the problem of "ELV-Recycling". In order to cope with this situation, the European regulation for the treatment of End-of-Life-Vehicles (09/2000) has been transferred to national law in Germany (ELV-Regulation from 1 July 2002). The long term aim is to reduce residues from the ELV-treatment to less than 5 wt% from 30 wt% within the next 10 years (2015). For that reason, there is a need for innovative and more efficient recycling techniques tailored to future materials in automobiles. The design process at automotive industry is continuously changing due to the strong demand on optional equipment and new technical solutions for fuel saving. Light materials, such as aluminum and plastics, consequently become more important and cause a decrease of ferrous metals. Since plastic materials are often used as compounds, a separation into initial material types by means of mechanical recycling methods is not possible. For that reason, efficient recycling can only be realized by introducing recycling-friendly car designs. In the end an integrated approach of auto makers and recycling industry is of decisive significance for the fulfillment of future regulations.