• 제목/요약/키워드: 자세특징

검색결과 317건 처리시간 0.023초

학습을 이용한 손 자세의 강인한 추정 (Robust Estimation of Hand Poses Based on Learning)

  • 김설호;장석우;김계영
    • 한국정보통신학회논문지
    • /
    • 제23권12호
    • /
    • pp.1528-1534
    • /
    • 2019
  • 최근 들어, 3차원의 깊이 카메라의 대중화로 인해서 RGB 영상에서 수행되던 연구에 새로운 관심과 기회가 생겼지만 사람의 손 자세의 추정은 여전히 어려운 주제 중의 하나로 분류되고 있다. 본 논문에서는 다양하게 입력되는 3차원의 깊이 영상으로부터 사람의 손의 자세를 학습 알고리즘을 이용하여 강인하게 추정하는 방법을 제안한다. 제안된 접근 방법에서는 먼저 뼈대 기반의 손 모델을 생성한 다음, 생성된 손 모델을 3차원의 포인트 클라우드 데이터에 정렬한다. 그런 다음, 랜덤 포레스트 기반의 학습 알고리즘을 이용하여 정렬된 손 모델로부터 손의 자세를 강인하게 추정한다. 본 논문의 실험 결과에서는 제안된 접근 방법이 다양한 실내외의 환경에서 촬영된 입력 영상으로부터 사람의 손의 자세를 강인하고 빠르게 추정한다는 것을 보여준다.

형태적 특징 정보를 이용한 C.Elegans의 개체 분류 (Classification of C.elegans Behavioral Phenotypes Using Shape Information)

  • 전미라;나원;홍승범;백중환
    • 한국통신학회논문지
    • /
    • 제28권7C호
    • /
    • pp.712-718
    • /
    • 2003
  • C.elegans 선충은 유전자 기능 연구에 주로 쓰이고 있으나, 변종들의 구분이 육안으로는 쉽지 않다. 이를 해결하기 위하여 컴퓨터 비젼을 이용하여 자동으로 분류할 수 있는 시스템이 연구 중이며, 이전 논문[1]에서 선충의 자동 분류 시스템에 사용될 영상의 전처리 과정에 대하여 서술한 바 있다. 본 논문에서는 전처리 된 영상 데이터를 이용하여 추출해 낼 수 있는 선충의 형태적 특징들을 제시한다. 선충의 크기와 관련한 특징과 자세에 관련한 특징으로 나누어, 각 특징의 추출 알고리즘을 수학적으로 표현하였다. 실험에서 제시된 형태적 특징 정보를 이용하여 직접 분류해 봄으로써 성능을 확인하였다. 분류 알고리즘은 Hierarchical Clustering을 사용하였다. 그 결과 실험에 이용된 선충의 4 종류 모두 90% 이상 옳게 분류되었다.

이동매니퓰레이터의 연속작업 수행을 위한 자세 제어 알고리즘에 관한 연구 (A Study on Posture Control Algorithm of Performing Consecutive Task for Mobile Manipulator)

  • 김종익;유경택;강진구
    • 한국컴퓨터정보학회논문지
    • /
    • 제13권3호
    • /
    • pp.153-160
    • /
    • 2008
  • 이동매니퓰레이터의 중요한 특징은 잉여의 자유도가 부과되므로 여러 모드의 이동을 가능하게 하고 다양한 작업을 수행할 수 있다. 본 논문에서는 이동로봇과 작업로봇이 결합된 형태를 이동매니퓰레이터라 정의하고 두 로봇이 협동하여 연속적인 하나의 작업을 수행할 때 최적의 자세를 유지할 수 있도록 한다. 이를 위하여 이동 로봇과 작업로봇의 기구학을 해석하고 이를 바탕으로 이동로봇의 Mobility를 이용하여 이동로봇의 가중치를 조정하였다. 또한 이동매니퓰레이터의 최적의 위치와 자세를 조인트 변위량의 최소화 충분조건으로 정의할 때 움직임을 최소화시키는 방법으로 Gradient Method를 이용하여 작업의 최적화 기준을 검토하였다. 이동로봇과 결합된 매니퓰레이터는 PURL-II를 이용하여 제시한 알고리즘 실현과 결과가 논의된다.

  • PDF

하이라이트 모델을 이용한 능동소나 표적신호의 합성 및 인식 (Synthesis and Classification of Active Sonar Target Signal Using Highlight Model)

  • 김태환;박정현;남종근;이수형;배건성
    • 한국음향학회지
    • /
    • 제28권2호
    • /
    • pp.135-140
    • /
    • 2009
  • 본 논문에서는 하이라이트 모델에 기반하여 능동소나의 표적신호를 합성하고, 합성된 신호를 이용하여 표적인식 실험을 수행하였다. 동일 표적이라도 표적의 자세각에 따라 다양한 형태의 파형을 갖는 신호가 합성되는데, 이에 대한 표적인식 결과를 알아보기 위해서 두 가지 방법으로 실험을 수행하였다. 하나는 고정된 여러 가지 자세각에 대한 표적신호에 대한 인식실험이고, 다른 하나는 임의의 자세각을 가지는 교신에 대만 인식 실험을 수행하였다. 인식실험을 위한 특징 인자로는 합성된 표적신호에 대해 시간영역에서 정합필터 및 포락선 검출을 통해 얻어지는 하이라이트 패턴을 사용하였으며, 패턴인식 기법으로는 다중클래스 SVM과 인공신경망을 사용하였다.

영상에 포함된 참고물체의 기하학적 정보를 이용한 이족로봇의 균형제어기법 (Balance Control Scheme of a Biped Robot using Geometrical Information of a Reference Object in an Input Image)

  • 박상범;한영준;한헌수
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2007년도 춘계학술대회 학술발표 논문집 제17권 제1호
    • /
    • pp.253-256
    • /
    • 2007
  • 본 논문은 로봇이 영상을 통해 획득한 특정물체의 기하학적 정보를 이용하여 이족로봇이 안정적으로 보행할 수 있게 하기 위한 균형제어기법을 제안한다. 영상은 핀 홀 카메라 모델을 통해 획득하였으며, 영상에 포함되는 특정물체의 특징성분에 대한 변위와 로봇의 자세와의 상관관계는 핀 홀 카메라 모델을 이용하여 공간좌표계의 특징정보를 평면좌표계의 영상정보에 매칭시킨 후, 특징들의 변위에 따른 로봇 관절 좌표계의 변위를 추정하는 방법으로 구할 수 있었다. 본 논문에서 제안하는 균형제어기법은 별도의 센서없이 카메라만을 이용하여 이족보행 로봇의 균형제어가 가능하다는 장점을 가지며, 소형이족로붓을 이용한 실험을 통해 그 효율성을 검증하였다.

  • PDF

다중 크기 블록 지역 이진 패턴을 이용한 랜덤 포레스트 기반의 머리 방향 분류 기법 (Head Pose Classification using Multi-scale Block LBP and Random Forest)

  • 강민주;이하연;강제원
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 하계학술대회
    • /
    • pp.253-255
    • /
    • 2016
  • 본 논문에서는 다중 지역 이진 패턴(Multi-scale Bock LBP, MB-LBP) 특징과 랜덤 포레스트에 기반한 새로운 기법의 머리 방향 분류 기법을 제안한다. 제안 기법에서는 occlusion 과 조명의 변화에 강인한 분류 정확도를 얻기 위해서 랜덤화된 트리를 학습하는 것을 목표로 한다. 우선, 얼굴 이미지로부터 많은 MB-LBP 특징을 추출하고, 얼굴 영상들을 랜덤하게 입력하고 MB-LBP 크기 파라미터와 같은 랜덤 특징과 블록 좌표들을 사용하여 트리를 생성한다. 게다가 각 노드에서 정보 이득을 최대화 하는 트리의 내부 노드를 생성하기 위해서 uniform LBP 의 특성을 고려한 분할 함수를 개발한다. 랜덤화된 트리는 랜덤 포레스트에 포함되어 있으며 마지막 결정단계에서 Maximum-A-Posteriori criterion 으로 최종 결정을 한다. 실험 결과는 제안 기법이 다양한 조명, 자세, 표현, occlusion 상황에서 기존의 방법보다 개선된 성능으로 머리 방향을 분류 할 수 있음을 보여준다.

  • PDF

비마커 증강현실을 위한 색상 및 깊이 정보를 융합한 Mean-Shift 추적 기반 손 자세의 추정 (The Estimation of Hand Pose Based on Mean-Shift Tracking Using the Fusion of Color and Depth Information for Marker-less Augmented Reality)

  • 이선형;한헌수;한영준
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권7호
    • /
    • pp.155-166
    • /
    • 2012
  • 본 논문은 비마커 증강현실(Marker-less Augmented Reality)을 위한 색상 및 깊이 정보를 융합한 Mean-Shift 추적 알고리즘 기반 손 자세의 추정 기법을 제안한다. 기존 비마커 증강현실의 연구는 손을 검출하기 위해 단순한 실험 배경에서 피부색상 기반으로 손 영역을 검출한다. 그리고 손가락의 특징점을 검출하여 손의 자세를 추정하므로 카메라에서 검출할 수 있는 손 자세에 많은 제약이 따른다. 하지만, 본 논문은 3D 센서의 색상 및 깊이 정보를 융합한 Mean-Shift 추적 기법을 사용함으로써 복잡한 배경에서 손을 검출할 수 있으며 손 자세를 크게 제약하지 않고 손 영역의 중심점과 임의의 2점의 깊이 값만으로 정확한 손 자세를 추정한다. 제안하는 Mean Shift 추적 기법은 피부 색상정보만 사용하는 방법보다 약 50픽셀 이하의 거리 오차를 보였다. 그리고 증강실험에서 제안하는 손 자세 추정 방법은 복잡한 실험환경에서도 마커 기반 방법과 유사한 성능의 실험결과를 보였다.

통합된 시스템에서의 얼굴검출과 인식기법 (An Integrated Face Detection and Recognition System)

  • 박동희;이규봉;이유홍;나상동;배철수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 춘계종합학술대회
    • /
    • pp.165-170
    • /
    • 2003
  • 본 논문에서는 임의의 장면에도 얼굴 인식에 영향을 받지 않는 통합된 얼굴 인식 방법을 제안한다. 크기 정규화는 피부 색 분할과 log-poler 매핑 절차의 새로운 조합을 통하여 얻어지고, 주요 얼굴 구성 요소 분석은 자세 변화들을 처리하기 위하여 제안된 멀티 뷰 접근을 통해 이루어진다. 주어진 컬러 입력 이미지로부터 검출기는 얼굴을 원형 경계 안에 둘러싸고 코의 위치를 표시하며 다음 인식을 위해, 원형 경계 내에 배치하는 방사형 격자는 특징 벡터 코 중심에 두었다. 컬러로 분할된 영역의 폭으로서 얼굴의 크기를 평가하고, 추출된 특징 벡터는 평가된 크기에 의하여 정규화된 크기이다. 특징 벡터는 얼굴 인식을 위해 훈련된 신경망 분류자에게 입력된다. 시스템은 서로 다른 복합적인 배경에서 다양한 크기와 자세를 가진 20명의 얼굴 데이터 베이스를 사용하여 실험한 결과 얼굴 인식기의 수행능력은 매우 작은 크기의 얼굴 이미지 외에는 87%에서 92%의 평균 인식율을 얻을 수 있었다.

  • PDF

2-D 슬리트광 비젼 센서를 이용한 물체의 자세측정 (The Position Estimation of a Body Using 2-D Slit Light Vision Sensors)

  • 김정관;한명철
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.133-142
    • /
    • 1999
  • We introduce the algorithms of 2-D and 3-D position estimation using 2-D vision sensors. The sensors used in this research issue red laser slit light to the body. So, it is very convenient to obtain the coordinates of corner point or edge in sensor coordinate. Since the measured points are normally not fixed in the body coordinate, the additional conditions, that corner lines or edges are straight and fixed in the body coordinate, are used to find out the position and orientation of the body. In the case of 2-D motional body, we can find the solution analytically. But in the case of 3-D motional body, linearization technique and least mean squares method are used because of hard nonlinearity.

  • PDF

유해 사이트 식별을 위한 칼라 영상에서 인체 검출 (Human Bodies Detection in Color Images for Discrimination of Destructive Site to Public Moral)

  • 이병선;정장호;이은주
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.352-354
    • /
    • 2001
  • 컴퓨터 기술과 정보통신 기술의 발달로 인터넷 사용이 손쉬워 짐에 따라 청소년들에게 무제한으로 유해 사이트가 공개되어 많은 사회적인 문제가 되고 있다. 본 논문에서는 인터넷 사용자에게 음란 정보를 담고 있는 웹사이트 접근을 차단하는 방법에 관한 것으로 칼라 영상에서 인체를 검출하는 새로운 방법을 제안하였다. 효율적인 인체 검출을 위해 인체의 특징의 하나인 피부색을 HSI(Hue, Saturation, Intensity)의 공간에서 조명의 강도 및 각도 차에 영향이 적은 H값과 피부색을 이루는 RGB(Red, Green, Blue)공간에서 R값의 비를 이용하여 추출하고, 미디언 필터를 사용하여 1차적으로 잡음 제거를 하고, 라벨링을 통하여 임계값보다 작은 라벨을 제거함으로써 2차적인 잡음을 제거한다. 다양한 자세의 전신을 템플릿으로 DB화하고, 유형을 2차적인 잡음을 제거한 영상의 크기와 동일하게 확대 한 다음, 템플릿 매칭으로 유사성을 비교하여 인체를 검출하는 방법을 제안하였다. 실험 결과, 피부색을 검출하는 제안 방법이 명암 차를 극복하였고, 다양한 피부색 검출에 양호한 방법임을 확인할 수 있었다. 또한 다양한 템플릿을 만들어, 1차 잡음제거와 라벨링으로 2차 잡음제거를 한 입력 영상과의 템플릿 매칭으로 다양한 자세의 인체를 검출할 수 있었다.

  • PDF