• Title/Summary/Keyword: 자료로부터 추론하기

Search Result 109, Processing Time 0.028 seconds

유사추론 기반 예측모형

  • Jang, Yong-Sik;Choe, Yun-Jeong
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.11a
    • /
    • pp.581-585
    • /
    • 2007
  • 본 연구는 비선형적인 시계열 자료로부터 최신 데이터와 유사한 사례를 탐색하여 미래를 예측하기 위하여 유사추론 기법을 이용한 예측 알고리즘을 제안한다. 기존의 연구들이 최신 데이터와 과거 사례와의 유사성을 비교하기 위해 유클리디언 거리 또는 평균 제곱에러 등을 이용하나, 추세의 유사성을 고려하지는 않는다. 본 연구는 사례 구간 크기, 예측 오차, 평균차이 검증, 사례간 추세의 유사성 등 다차원적 유사추론 요인을 이용한 예측방법과 그 효과를 제시한다.

  • PDF

Statistical Literacy of Fifth and Sixth Graders in Elementary School about the Beginning Inference from a Pictograph Task ('그림그래프에서 추론하기' 과제에서 나타나는 초등학교 5, 6학년 학생들의 통계적 소양)

  • Moon, Eunhye;Lee, Kwangho
    • Education of Primary School Mathematics
    • /
    • v.22 no.3
    • /
    • pp.149-166
    • /
    • 2019
  • The purpose of this study is to analyze the statistical literacy in elementary school students when they beginning inference. Picto-graphs provide statistical information and often data-related arguments they certainly qualify as objects for interpretation, for critical evaluation, and for discussion or communication of the conclusions presented. For research, the inference from pictograph task was designed and statistical literacy standards for evaluating the student's level was presented based on prior studies. Evaluating student's statistical literacy is meaningful in that it can check their current level. To know the student's current level can help them achieve a higher level of performance. The outcomes of this research indicate that pictograph can provide a basis for rich tasks displaying not only student's counting skills but also their appreciation of variation and uncertainty in prediction. Raising statistical thinking by students is an important goal in statistical education, and the experience of informal statistical reasoning can help with formal statistical reasoning that will be learned later. Therefore, the task about the inference from a pictograph, discussions on statistical learning of elementary school children are expected to present meaningful implications for statistical education.

Inference of RMR Value Using Fuzzy Set Theory and Neuro-Fuzzy Techniques (퍼지집합이론 및 뉴로-퍼지기법을 이용한 RMR 값의 추론)

  • 배규진;조만섭
    • Tunnel and Underground Space
    • /
    • v.11 no.4
    • /
    • pp.289-300
    • /
    • 2001
  • In the design of tunnel, it contains inaccuracy of data, fuzziness of evaluation, observer error and so on. The face observation during tunnel excavation, therefore, plays an important role to raise stability and to reduce supporting cost. This study is carried out to minimize the subjectiveness of observer and to exactly evaluate the natural properties of ground during the face observation. For these purpose, fuzzy set theory and neuro-fuzzy techniques in artificial intelligent techniques are applied to the inference of the RMR value from the observation data. The correlation between original RMR vague and inferred RM $R_{_FU}$ and RM $R_{_NF}$ values from fuzzy set theory and neuro-fuzzy techniques is investigated using 46 data. The results show that good correlation between original RMR value and infected RM $R_{_FU}$ and RM $R_{_NF}$ value is observed when the correlation coefficients are |R|=0.96 and |R|=0.95 respectively. From these results, applicability of fuzzy set theory and neuro-fuzzy techniques to rock mats classification is proved to be sufficiently high enough. enough.

  • PDF

An Investigation of Two Seventh Graders' Modification of their Multiplicative Reasoning for Solving Combinatorial Problems and their Reciprocal Interactions with Represented Symbols (중학교 1학년 학생들의 '경우의 수' 문제 해결과정에서 나타나는 표현기호와의 상호작용을 통한 곱셈추론 양식의 변화)

  • Shin, Jae-Hong;Lee, Joong-Kweon
    • School Mathematics
    • /
    • v.11 no.3
    • /
    • pp.351-368
    • /
    • 2009
  • This study presents data from a year-long teaching experiment which illustrate how two seventh graders modified their multiplicative thinking and interacted with their representing symbols in the context of combinatorial problem situations. Damon was at the process of construction of recursively multiplicative thinking by modifying his multiplicative reasoning, but Carol appeared to remain at the stage of a binary multiplicative scheme. The two students' struggles with their representing symbols or represented symbols by the teacher show that even well-organized symbolic systems from teachers' perspective do not necessarily help students advance their mathematical capacity.

  • PDF

중풍의 증형 진단을 위한 판별모형

  • Sin, Yang-Gyu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.7 no.2
    • /
    • pp.283-287
    • /
    • 1996
  • 본 연구는 중풍에서의 한의학의 풍부한 임상자료들에 대한 객관적이고도 논리적인 자료처리방법 및 변증으로부터 증형을 추론할 수 있는 통계적 방법을 연구하고자 한다. 중풍 전문의에 의해 수집된 65명의 환자들의 임상자료로부터 다변량 자료 분석의 하나인 판별분석을 이용하여 증후로부터 증형을 판단할 수 있는 수리적 판별모형을 구축하였다. 구축된 모형은 중풍 전문가 시스템을 개발하기 위한 기초가 될 것이다.

  • PDF

몬테칼로 베이지안 분석과 응용 사례

  • 강승호;박태성
    • Communications for Statistical Applications and Methods
    • /
    • v.3 no.1
    • /
    • pp.169-177
    • /
    • 1996
  • 본 논문에서는 한 유명 농구선수의 과거의 연도별 평균득점과 평균 야투율을 기초로 앞으로의 경기에 대한 평균득점과 평균야투율을 추정하기 위해 몬테칼로 베이지안 분석법 중의 하나인 Sampling-Important-Resampling (SIR) 알고리즘을 이용하였다. 즉 과거의 자료로부터 평균득점과 평균야투율에 대한 사전밀도함수를 설정하고 SIR 알고리즘을 이용하여 사후 밀도함수를 구한 후에 이를 기초로 베이지안 추론을 하였다.

  • PDF

Causal inference from nonrandomized data: key concepts and recent trends (비실험 자료로부터의 인과 추론: 핵심 개념과 최근 동향)

  • Choi, Young-Geun;Yu, Donghyeon
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.2
    • /
    • pp.173-185
    • /
    • 2019
  • Causal questions are prevalent in scientific research, for example, how effective a treatment was for preventing an infectious disease, how much a policy increased utility, or which advertisement would give the highest click rate for a given customer. Causal inference theory in statistics interprets those questions as inferring the effect of a given intervention (treatment or policy) in the data generating process. Causal inference has been used in medicine, public health, and economics; in addition, it has received recent attention as a tool for data-driven decision making processes. Many recent datasets are observational, rather than experimental, which makes the causal inference theory more complex. This review introduces key concepts and recent trends of statistical causal inference in observational studies. We first introduce the Neyman-Rubin's potential outcome framework to formularize from causal questions to average treatment effects as well as discuss popular methods to estimate treatment effects such as propensity score approaches and regression approaches. For recent trends, we briefly discuss (1) conditional (heterogeneous) treatment effects and machine learning-based approaches, (2) curse of dimensionality on the estimation of treatment effect and its remedies, and (3) Pearl's structural causal model to deal with more complex causal relationships and its connection to the Neyman-Rubin's potential outcome model.

Analysis of massive data in astronomy (천문학에서의 대용량 자료 분석)

  • Shin, Min-Su
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.6
    • /
    • pp.1107-1116
    • /
    • 2016
  • Recent astronomical survey observations have produced substantial amounts of data as well as completely changed conventional methods of analyzing astronomical data. Both classical statistical inference and modern machine learning methods have been used in every step of data analysis that range from data calibration to inferences of physical models. We are seeing the growing popularity of using machine learning methods in classical problems of astronomical data analysis due to low-cost data acquisition using cheap large-scale detectors and fast computer networks that enable us to share large volumes of data. It is common to consider the effects of inhomogeneous spatial and temporal coverage in the analysis of big astronomical data. The growing size of the data requires us to use parallel distributed computing environments as well as machine learning algorithms. Distributed data analysis systems have not been adopted widely for the general analysis of massive astronomical data. Gathering adequate training data is expensive in observation and learning data are generally collected from multiple data sources in astronomy; therefore, semi-supervised and ensemble machine learning methods will become important for the analysis of big astronomical data.

Evaluation of Parameter Estimation Methods Using Uncertainty Analysis of Rainfall-Frequency Curves (강우-빈도 곡선의 불확실성 분석을 이용한 매개변수 추정법의 평가)

  • Han, Jeong-Woo;Kwon, Hyun-Han;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1272-1276
    • /
    • 2009
  • 극치강우사상에 의한 설계 홍수량의 갑작스런 증 감은 홍수, 가뭄과 같은 기상학적 요인에 기인한 재난을 발생시킨다. 많은 연구자들은 보다 정확한 확률강우량의 예측과 유출량의 예측을 위해 많은 노력을 하고 있다. 본 연구에서는 강원도 강릉 강우관측소를 대상으로 강우-빈도곡선의 불확실성 분석을 수행하였다. 관측 자료의 수집에서 발생하는 불확실성을 최소화 하고자 ARMA 모형을 이용하여 합성강우자료를 구축하였으며, 발생된 합성강우량을 Bootstrap 방법을 이용하여 대규모의 자료집단으로 발생시킴으로서 신뢰구간에 사용할 자료집단을 발생시켰다. 본 연구에서는 극치강우사상에 적합한 것으로 알려진 Gumbel 분포와 일반극치 분포(GEV 분포) 모형을 선정하였으며 각 확률분포모형에 대한 매개변수 추정방법으로 최우도법, 확률가중모멘트법 그리고 베이지안 추론방법을 사용하여 각 매개변수의 최후 추정치를 산정하였다. 또한 원 자료를 이용하여 최우도법, 확률가중모멘트법 그리고 베이지안 추론방법을 통해 매개변수를 산정 후 강우-빈도 곡선을 추정하여 합성강우자료의 Bootstrap 방법에 의해 발생된 자료로부터 산정한 강우-빈도 곡선의 신뢰구간과 비교함으로서 불확실성이 낮은 확률강우량을 산정할 수 있는 매개변수 추정방법을 평가하고자하였다.

  • PDF

Fuzzy reasoning for assessing bulk tank milk quality (Bulk tank milk의 품질평가를 위한 퍼지기반 추론)

  • Kim Taioun;Jung Daeyou;Jayarao Bhushan M.
    • Journal of Intelligence and Information Systems
    • /
    • v.10 no.3
    • /
    • pp.39-57
    • /
    • 2004
  • Many dairy producers periodically receive information about their bulk tank milk with reference to bulk tank somatic cell counts, standard plate counts, and preliminary incubation counts. This information, when collected over a period of time, in combination with bulk tank mastitis culture reports can become a significant knowledge base. Several guidelines have been proposed to interpret farm bulk tank milk bacterial counts. However many of the suggested interpretive criteria lack validation, and provide little insight to the interrelationship between different groups of bacteria found in bulk tank milk. Also the linguistic terms describing bulk tank milk quality or herd management status are rather vague or fuzzy such as excellent, good or unsatisfactory. The objective of this paper was to develop a set of fuzzy descriptors to evaluate bulk tank milk quality and herd's milking practice based on bulk tank milk microbiology test results. Thus, fuzzy logic based reasoning methodologies were developed based on fuzzy inference engine. Input parameters were bulk tank somatic cell counts, standard plate counts, preliminary incubation counts, laboratory pasteurization counts, non agalactiae-Streptococci and Streptococci like organisms, and Staphylococcus aureus. Based on the input data, bulk tank milk quality was classified as excellent, good, milk cooling problem, cleaning problem, environmental mastitis, or mixed with mastitis and cleaning problems. The results from fuzzy reasoning would provide a reference regarding a good management practice for milk producers, dairy health consultants, and veterinarians.

  • PDF