DOI QR코드

DOI QR Code

Statistical Literacy of Fifth and Sixth Graders in Elementary School about the Beginning Inference from a Pictograph Task

'그림그래프에서 추론하기' 과제에서 나타나는 초등학교 5, 6학년 학생들의 통계적 소양

  • Moon, Eunhye (Graduate School of Korea National University of Education) ;
  • Lee, Kwangho (Korea National University of Education)
  • Received : 2019.05.20
  • Accepted : 2019.07.12
  • Published : 2019.07.31

Abstract

The purpose of this study is to analyze the statistical literacy in elementary school students when they beginning inference. Picto-graphs provide statistical information and often data-related arguments they certainly qualify as objects for interpretation, for critical evaluation, and for discussion or communication of the conclusions presented. For research, the inference from pictograph task was designed and statistical literacy standards for evaluating the student's level was presented based on prior studies. Evaluating student's statistical literacy is meaningful in that it can check their current level. To know the student's current level can help them achieve a higher level of performance. The outcomes of this research indicate that pictograph can provide a basis for rich tasks displaying not only student's counting skills but also their appreciation of variation and uncertainty in prediction. Raising statistical thinking by students is an important goal in statistical education, and the experience of informal statistical reasoning can help with formal statistical reasoning that will be learned later. Therefore, the task about the inference from a pictograph, discussions on statistical learning of elementary school children are expected to present meaningful implications for statistical education.

초등학교 수학에서 자료와 가능성 영역은 통계적 과정에서 요구되는 기초적인 통계적 내용을 학습하여 통계의 기초 소양을 기르는 단원이다. 학생들은 실제 자료에서 정보를 추출하고, 이를 표와 그래프로 정리하여 결론을 통계적으로 추론하며, 합리적인 의사결정을 내리는 과정을 경험한다. 본 연구에서는 '그림그래프에서 추론하기' 과제에 대한 초등학교 5, 6학년 학생들의 통계적 소양을 분석하여 초등학교에서 추론 학습 가능성과 통계적 소양의 관점에서 그림그래프의 교육적 가치를 살펴본다. 학생들의 통계적 사고를 길러주는 것은 통계교육에서 중요한 목표이며, 비형식적인 통계 추론의 경험은 이후 학습할 형식적 통계적 추론에 도움을 줄 수 있다. 따라서 '그림그래프에서 추론하기' 과제에서 나타나는 초등학생들의 통계적 소양에 대한 논의는 학교 통계 교육에 유의미한 시사점을 제시할 것이다.

Keywords

SHGHD@_2019_v22n3_149_f0001.png 이미지

[그림 1] 교과서에서 학습하는 그림그래프 (3학년, 6학년) [Fig. 1] Pictograph in the Textbook (Third & Sixth grade)

SHGHD@_2019_v22n3_149_f0002.png 이미지

[그림 2] Watson&Moritz(2001)의 연구에서 사용한 문제 [Fig. 2] Task used in Watson&Moritz research(2001)

SHGHD@_2019_v22n3_149_f0003.png 이미지

[그림 3] 그림그래프에서 추론하기 과제 [Fig. 3] Task about the beginning inference from a pictograph

SHGHD@_2019_v22n3_149_f0004.png 이미지

[그림 4] WC1수준 응답의 세 가지 예 (문항3) [Fig. 4] Three examples of responses in WC1 (Q3)

SHGHD@_2019_v22n3_149_f0005.png 이미지

[그림 5] WC1수준 응답의 세 가지 예 (문항4) [Fig. 5] Three examples of responses in WC1 (Q4)

SHGHD@_2019_v22n3_149_f0006.png 이미지

[그림 6] WC2수준 응답의 예(문항3) [Fig. 6] An example of response in WC2(Q3)

SHGHD@_2019_v22n3_149_f0007.png 이미지

[그림 7] WC2수준 응답의 세 가지 예(문항4) [Fig. 7] Three examples of responses in WC2(Q4)

SHGHD@_2019_v22n3_149_f0008.png 이미지

[그림 8] WC3수준 응답의 세 가지 예(문항3) [Fig. 8] Three examples of responses in WC3(Q3)

SHGHD@_2019_v22n3_149_f0009.png 이미지

[그림 9] WC3수준 응답의 두 가지 예(문항4) [Fig. 9] Two examples of responses in WC3(Q4)

SHGHD@_2019_v22n3_149_f0010.png 이미지

[그림 10] WC4수준 응답의 세 가지 예(문항3) [Fig. 10] Three examples of responses in WC4(Q3)

SHGHD@_2019_v22n3_149_f0011.png 이미지

[그림 11] WC4수준 응답의 다섯 가지 예(문항4) [Fig. 11] Five examples of responses in WC4(Q4)

SHGHD@_2019_v22n3_149_f0012.png 이미지

[그림 12] WC5수준 응답의 세 가지 예(문항3) [Fig. 12] Three examples of responses in WC5(Q3)

SHGHD@_2019_v22n3_149_f0013.png 이미지

[그림 13] WC5수준 응답의 네 가지 예(문항4) [Fig. 13] Four examples of responses in WC5(Q4)

SHGHD@_2019_v22n3_149_f0014.png 이미지

[그림 14] WC6수준 응답의 네 가지 예(문항3) [Fig. 14] Four examples of responses in WC6(Q3)

SHGHD@_2019_v22n3_149_f0015.png 이미지

[그림 15] WC6수준 응답의 두 가지 예(문항4) [Fig. 15] Two examples of responses in WC6(Q4)

[표 1] Watson(1997)의 통계적 소양 수준 [Table 1] Statistical literacy assessment(Watson, 1997)

SHGHD@_2019_v22n3_149_t0001.png 이미지

[표 2] 통계적 소양 수준(Watson & Callingham, 2003) [Table 2] Statistical literacy assessment

SHGHD@_2019_v22n3_149_t0002.png 이미지

[표 3] 통계적 소양 수준(Sharma et al, 2011) [Table 3] Statistical literacy assessment

SHGHD@_2019_v22n3_149_t0003.png 이미지

[표 4] 통계적 소양 수준 통합 기준(문은혜·이광호, 2018) [Table 4] Standard for integration of statistical assessment.

SHGHD@_2019_v22n3_149_t0004.png 이미지

[표 5] 연구 참여자 [Table 5] A research participant information

SHGHD@_2019_v22n3_149_t0005.png 이미지

[표 6] 학생 응답 범주화 [Table 6] Classification of student responses

SHGHD@_2019_v22n3_149_t0006.png 이미지

[표 7] 3차 범주화 과정을 거친 최종 분석 기준 [Table 7] Final criteria that have gone through the third categorization process

SHGHD@_2019_v22n3_149_t0007.png 이미지

[표 8] 문항 1), 2)의 정답률 [Table 8] Percentage of correct answers(Q1,Q2)

SHGHD@_2019_v22n3_149_t0008.png 이미지

[표 9] 통계적 소양 수준 별 학생 분포(1-(3)) [Table 9] Student Distribution by Statistical Level

SHGHD@_2019_v22n3_149_t0009.png 이미지

[표 10] 통계적 소양 수준 별 학생 분포 [Table 10] Student Distribution by Statistical Level

SHGHD@_2019_v22n3_149_t0010.png 이미지

[표 11] 통계적 소양 수준 별 학생 분포 [Table 11] Student Distribution by Statistical Level

SHGHD@_2019_v22n3_149_t0011.png 이미지

References

  1. Kang W., Kim, S. M., Paek, S. Y., Park, M. G., Oh, Y. Y., & Chang, H. W. (2014). Theory of teaching elementary mathematics. Seoul: Kyungmunsa.
  2. Kang, H. Y. (2012). Study of the educational meaning of Statistical Literacy. The Korean Journal for History of Mathematics, 25(4), 121-137.
  3. Ministry of Education. (2015). Mathematics Curriculum. Bulletin of MOE No. 2015-74 [Seperate Volume #8]
  4. Yun, I. K. & Ryu, H. S. (2012). Influence of Teaching Stem and Leaf Plots using the MIC Textbook on Student Understanding of Stem and Leaf Graphs. Research Institute of Curriculum & Instruction, 16(1), 169-195. https://doi.org/10.24231/rici.2012.16.1.169
  5. Moon, E. H. & Lee, K. H (2018). Statistical Literacy of Fifth and Sixth Graders for the Data Presentation Task Based on the Speculative Data Generation Process. Education of Primary School Mathematics, 21(4), 397-413. https://doi.org/10.7468/JKSMEC.2018.21.4.397
  6. Min, J. W. (2010). Study on the Teaching of Statistical Estimation. Department of Mathematics Education, The Graduate School, Seoul National University.
  7. Park, Y. H. (2016). An Analysis of Contents on Statistics in Elementary Mathematics Textbooks According to 2009 Mathematics Curriculum for Elementary School. Journal of Elementary Mathematics Education in Korea, 20(1), 17-34.
  8. Bae, J. S. (1999). The Content Guidance System for Elementary Math Education. Seoul: Kyungmunsa.
  9. Sin. B. M. (2018). An Analysis of Teachers' Statistical Reasoning. The Journal of Curriculum and Evaluation, 21(2), 103-128. https://doi.org/10.29221/jce.2018.21.2.103
  10. Woo, J. H. (2000). An Exploration of the Reform Direction of Teaching Statistics. School Mathematics, 2(1), 1-27.
  11. Woo, J. H. (2017). The Educational Foundation of School Mathematics. Seoul National University Press.
  12. Lee, J. H. & Kim, W. K. (2011). Effects of Spreadsheet-used Instruction on Statistical Thinking and Attitude. School Mathematics, 50(2), 183-211.
  13. Jo, A. Y., Lee, K. H. & Choi, S. T. (2014). The 6th Graders' Graph Interpretation and its Teaching Methods. Education of Primary School Mathematics, 17(2), 113-125. https://doi.org/10.7468/jksmec.2014.17.2.113
  14. Tak, B. J. (2017). Pre-Service Mathematics Teachers' Statistical Knowledge for Teaching to Develop Statistical Literacy: Focusing on the Teaching of Sample. Major in Mathematics Education, The Graduate School, Seoul National University, Doctor Thesis.
  15. Tak, B. J. (2018). An Analysis on Classifying and Representing Data as Statistical Literacy: Focusing on Elementary Mathematics Curriculum for 1st and 2nd Grades. Education of Primary School Mathematics, 22(3), 221-240.
  16. Biggs, J. B. & Collis, K. F. (1982). Evaluating the quality of learning: The SOLO taxonomy. New York: Academic Press.
  17. Cohen, J. (1960) A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement, 20, 37-46. https://doi.org/10.1177/001316446002000104
  18. Curcio, F. R. (1987). Comprehension of Mathematical Relationships expressed in graphs. Journal for Research in Mathematics Education, 18(5), 382-393. https://doi.org/10.2307/749086
  19. Dugdale, S. (1993). Functions and graphs : Perspective on Student Thinking. In Romberg, T. A., Fennema, E. & Carpenter, T. P.(Eds.), Integating Research on The Graphical Representation of Function, 101-130.
  20. Fleiss, J. L. (1981). Statistical methods for rates and proportion. New York: Wiley.
  21. Gal, I. (2002). Adults' statistical literacy: Meanings, components, responsibilities. International Statistical Review, 70(1), 1-25. https://doi.org/10.1111/j.1751-5823.2002.tb00336.x
  22. Garfield, J. & Ben-Zvi, D. (2008). Developing students' statistical reasoning: Connecting research and teaching practice. New York: Springer.
  23. Garfield, J., delMas, R., & Chance, B. (2003). Web-based assessment resource tools for improving statistical thinking. Paper presented at the annual meeting of the American Educational Research Association, Chicago.
  24. Moore, D. S. (1992), What is Statistics, In D. C. Hoaglin & D. S. Moore (eds.), Perspectives on Contemporary Statics, 1-17.
  25. Neal, D. (1994). An Investigation of Young Children's Understanding of Graphs. Unpublished master's thesis, University of Tasmania, Hobart, Australia.
  26. Sharma, S. (2017). Definitions and models of statistical literacy: a literature review, Open Review of Educational Research, 4(1), 118-133. https://doi.org/10.1080/23265507.2017.1354313
  27. Sharma, S., Doyle, P., Shandil, V., & Talakia'atu, S. (2011). Developing statistical literacy with year 9 students. Research Information for Educational Research, 1, 43-60.
  28. Watson, J. M. (1997). Assessing Statistical Thinking Using the Media. In I. Gal & J. B. Garfield (Eds.). The Assessment Chanllenge in Statistics Education (pp. 107-121). Amsterdam: IOS Press.
  29. Watson, J. M. (2006). Statistical literacy at school:Growth and goals. Mahwah, NJ: Lawrence Erlbaum Associates.
  30. Watson, J. & Callingham, R. (2003). Statistical literacy: A complex hierarchical construct. Statistics Education Research Journal, 2(2), 3-46.
  31. Watson, J. & Moritz, J. (2001). Development of reasoning associated with pictograph: Representing, interpreting, and predicting. Educational Studies in Mathematics, 48, 47-81. https://doi.org/10.1023/A:1015594414565
  32. Zawojewski, J. S., & Heckman, D. J. (1997). What do students know about data analysis, statistics, and probability? In P. A. Kenney & E. A. Silver (Eds.), Results from the sixth mathematics assessment of the National Assessment of Educational Progress (pp. 195-223). Reston, VA: National Council of Teachers of Mathematics.