• Title/Summary/Keyword: 자동 이득 제어

Search Result 88, Processing Time 0.022 seconds

Automatic Gain Control in WiBro AT (Access Terminal) (와이브로 단말의 자동 이득 제어)

  • Lee, Yong-Su;Kim, Young-Il;Kim, Whan-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1A
    • /
    • pp.10-15
    • /
    • 2010
  • This paper proposes a practical method for AGC (Automatic Gain Control) in WiBro (Wireless Broadband) AT (Access Terminal) system. Downlink packets in this system consist of preamble symbols for AGC, AFC (Automatic Frequency Control) and other purposes and data symbols for traffic transmission. In this paper we compare theoretical BER (Bit Error Rate) performance with simulation results and produce optimum parameters for AGC in this system. And we propose an efficient AGC scheme before synchronization.

A Digital Automatic Gain Control Circuit for CMOS CCD Camera Interfaces (CMOS CCD 카메라용 디지털 자동 이득 제어 회로)

  • 이진국;차유진;이승훈
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.5
    • /
    • pp.48-55
    • /
    • 1999
  • This paper describes automatic gain control circuit (AGC) design techniques for CMOS CCD camera interface systems. The required gain of the AGC in the proposed system is controlled directly by digital bits without conventional extra D/A converters and the signal settling behavior is almost independent of AGC gain variation at video speeds. A capacitor-segment combination technique to obtain large capacitance values considerably improves the effective bandwidth of the AGC based on switched-capacitor techniques. A proposed layout scheme for capacitor implementation shows AGC matching accuracy better than 0.1 %. The outputs from the AGC are transferred to a 10b A/D converter integrated on the same chip. The proposed AGC is implemented as a sub-block of a CCD camera interface system using a 0.5 um n-well CMOS process. The prototype shows the 32-dB AGC dynamic range in 1/8-dB steps with 173 mW at 3 V and 25 MHz.

  • PDF

Design of Digital Automatic Gain Controller for the IEEE 802-11a Physical Layer (고속 무선 LAN을 위한 디지털 자동 이득 제어기 설계)

  • 이봉근;이영호;강봉순
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.101-104
    • /
    • 2001
  • In this paper, we propose the Digital Automatic Gain Controller for IEEE 802.11a High-speed Physical Layer in the 5 GHz Band. The input gain is estimated by calculating the energy of the training symbol that is a synchronizing signal. The renewal gain is calculated by comparing the estimated gain with the ideal gain. The renewal gain is converted into the controlled voltage for GCA to reduce or amplify the input signals. We used a piecewise-linear approximation to reduce the hardware size. The gain control is performed seven times to provide more accurate gain control. The proposed automatic gain controller is designed with VHDL and verified by using the Xilinx FPGA.

  • PDF

An Automatic Gain Control Circuit for Burst-mode Optical Signal reception (버스트 모드 광 신호 수신을 위한 자동 이득제어 회로)

  • 기현철
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.12
    • /
    • pp.31-38
    • /
    • 2003
  • In this paper, we proposed a new structural AGC(Automatic Gain Control) circuit with extremely short settling time using high speed operation characteristics of a clipper. We investigated its operation characteristics in analysis. We also designed a burst-mode preamplifier for 1.25Gbps EPON systems using commercial foundry and investigated its characteristics by comparing the results of the designed and those of the analyzed. The characteristics of the designed circuit are in good agreement with those of the analyzed. As a result, it is shown that it is possible to realize extremely short settling time of under 1㎱.

Design of Digital Automatic Gain Controller for the High-speed Processing (고속 동작을 위한 디지털 자동 이득 제어기 설계)

  • 이봉근;이영호;강봉순
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.4
    • /
    • pp.71-76
    • /
    • 2001
  • In this paper we propose the Digital Automatic Gain Controller for IEEE 802.11a-High-speed Physical Layer in the 5 GHz Band. The input gain it estimated by calculating the energy of the training symbol that it a synchronizing signal. The renewal gain is calculated by comparing the estimated gain with the ideal gain. The renewal gain is converted into the controlled voltage for GCA to reduce or amplify the input signals. We used a piecewise-linear approximation to reduce the hardware size. The gain control is performed seven times to provide more accurate gain control. The proposed automatic gain controller is designed with VHDL and verified by using the Xilinx FPGA.

  • PDF

Automated Control Gain Determination Using PSO/SQP Algorithm (PSO/SQP를 이용한 제어기 이득 자동 추출)

  • Lee, Jang-Ho;Ryu, Hyeok;Min, Byoung-Moom
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.61-67
    • /
    • 2008
  • To design flight control law of an unmanned aerial vehicle, automated control gain determination program was developed. The procedure for determination of control gain was formulated as the control gains were designed from the optimal solutions of the optimization problem. PSO algorithm, which is one of the evolutionary computation method, and SQP algorithm, which is one of the nonlinear programming method, are used as optimization problem solver. Thru this technique, computation time required for finding the optimal solution is decreased to 1/5 of that of PSO algorithm and more accurate optimal solution is obtained.

  • PDF

The Speed Control of Induction Motor using Automatic Neural Network Gain Regulator (신경망이득 자동조절기를 이용한 유도모터 속도 제어)

  • Park, Wal-Seo;Kim, Yong-Wook;Lee, Sung-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.7
    • /
    • pp.53-57
    • /
    • 2006
  • PID controller is widely uesd as automatic equipment for industry. However when a system has various characters of intermittence or continuance, a new parameter decision for accurate control is a hard task. As method of solving this problem, in this paper, a Neural Network gain automatic regulator as PID controller functions is presented. A property feedback control gain of system is decided by a rule of Delta learning. The function of proposed automatic Neural Network gain regulator is verified by speed control experiment results of Induction Motor.

Construction of the I-PD Control System by Multilayer Neural Network (다층 신경망에 의한 I-PD 제어계의 구성)

  • 고태언
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.1
    • /
    • pp.74-79
    • /
    • 2002
  • Many control techniques have been proposed in order to improve the control performance in discrete-time domain control system. In control system using these techniques, the response-characteristic of system is dependent on the gains of the controller. Specially, There is a need to readjust the gain of controller when the response of system is changed by disturbance or load fluctuation. In this paper, I-PD controller and pre-compensator are designed by multilayer neural network. The gains of I-PD controller and pre-compensator are adjusted automatically by back propagation algorithm when the response characteristic of system is changed under a condition. Applying this control technique to the position control system using a DC servo motor as a driver, the control performance of controller is verified by the results of experiment.

  • PDF

Auto-Exposure Control using Loop-Up Table Based on Scene-Luminance Curve in Mobile Phone Camera (입.출력 특성곡선에 기초한 Look-Up Table 방식의 자동노출제어)

  • Lee, Tae-Hyoug;Kyung, Wang-Jun;Lee, Cheol Hee;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.4
    • /
    • pp.56-62
    • /
    • 2010
  • Auto-exposure control automatically calculates and adjusts the exposure for consecutive input image. Recently, this is usually controlled by the sensor gain, however, unsuitable control causes oscillation of luminance for sonsecutive input images, called as flickering. Also, in mobile phone cameras, only simple information, such as the average luminance value, can be utilized due to coarse performance. Therefore, this paper presents a new real-time AE control method using a Look Up Table(LUT) based on Scene-Luminance curves to avoid the generation of flickering. Prior to the AE control, a LUT is constructed, which illustrates the characteristic of outputs for input patches corresponding to sensor gains. The AE control is first performed by estimating a current scene as a patch using the proposed LUT. A new sensor gain is then estimated using also LUT with previously estimated patch. The entire estimation process is performed using linear interpolation to achieve real-time execution. Based on experimental results, the proposed AE control is demonstrated with real-time, flicker-free.

Implementation of Novel Automatic Gain Control in Vehicular Environments (차량통신환경에서의 자동이득제어기법 적용)

  • Cho, Woong;Oh, Hyun-Seo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.4
    • /
    • pp.100-106
    • /
    • 2011
  • Radio Frequency (RF) signal fluctuates dynamically in wireless communication environments, where this fluctuation is severe especially in vehicular environments. Automatic Gain Control (AGC) is critical in wireless communications to establish reliable communication links and compensate the received signal fluctuation. In this paper, we introduce a simple and novel AGC scheme which uses both Received Signal Strength Indicator (RSSI) and analog-to digital converter (ADC) signals. Performance enhancement of the proposed AGC scheme is verified with practical measurements including simulations.