자유시점 비디오는 원하는 시점을 자유로이 선택하여 보는 능동형 비디오이다. 이 기술은 박물관 투어, 엔터테인먼트 등의 다양한 분야에서 활용된다. 본 논문에서는 자유시점 비디오의 새로운 분야로 가상 카메라와 깊이맵을 이용하여 한 장의 영상 내부를 항해하는 입체 자유시점 Tour-Into-Picture (TIP)을 제안한다. 오래전부터 TIP가 연구되어 왔는데, 이 분야는 한 장의 단안 사진 내부를 항해하면서 애니메이션으로 볼 수 있게 하는 기술이다. 제안 방법은 전경 마스크, 배경영상, 및 깊이맵을 반자동 방법으로 구한다. 다음에는 영상 내부를 항해하면서 입체 원근투영 영상들을 획득한다. 배경영상과 전경객체의 3D 데이터를 기반으로 가상 카메라의 3차원 공간이동, 요/피치/롤링 등의 회전, 룩어라운드, 줌 등의 다양한 카메라 기능을 활용하여 입체 자유시점 비디오를 구현한다. 원근투영은 직교투형보다 우수한 입체감을 전달하며, 기존 방법과 비교하여 텍스쳐의 3D 데이터를 직접 원근투영하여 처리속도를 향상시켰다. 소프트웨어는 MFC Visual C++ 및 OpenGL 기반으로 구축되었으며, 실험영상으로 신윤복의 단오풍정을 사용하여 고전화의 입체 자유시점 비디오를 시청이 가능하다.
유비쿼터스 홈은 가정 내의 다양한 가전기기 및 센서들로 구성된 유무선 네트워크를 통해 u-Life, u-Health등의 다양한 유비쿼터스 서비스를 제공하는 미래의 디지털 가정환경으로 부상하고 있다. 유비쿼터스 홈서비스는 센서들로부터 수집된 정보를 통해 사용자의 상황을 자동으로 인지하여 가전기기들을 상황에 맞게 적응하도록 함으로써 사용자 편의성을 극대화 한다. 이러한 상황인지 홈 환경에서 집안을 미리 사용자가 원하는 상태로 조절하기 위해 사용자의 미래 행위를 예측하는 것을 미래 유비쿼터스 홈에 가장 핵심적인 기능 중 하나이다. 본 논문은 유비쿼터스 홈 환경에서 상황인지 서비스를 위한 단계적 예측 알고리즘을 제안한다. 본 알고리즘은 예측과 실행의 두 단계로 이루어 진다. 첫 번째 예측단계에서 트리구조를 이용하여 사용자가 이동할 다음 위치를 예측하고, 두 번째 실행 단계에서는 테이블 매칭 방법을 이용하여 각각의 위치에 있는 가전기기들을 사용자가 원하는 대로 미리 예측하고 구동시켜 사용자에게 서비스를 제공할 수 있도록 설계하였다. 일반적으로 가전기기들은 한 개씩 독립적으로 동작하기보다 여러 기기가 함께 동작하여 특정 목적에 이용된다는 점에 착안하여, 모드서비스 개념을 도입함으로써 사용자가 동작시키고자 하는 기기들을 한꺼번에 예측할 수 있는 장점을 가진다. 또한 시뮬레이션을 통해 본 논문이 제안한 단계적 예측 알고리즘의 성능을 검증한다.
핸드오버는 통신 중인 무선 단말이 데이터의 손실을 최소화 하면서 현재 접속하고 있는 기지국/셀에서 다른 기지국/셀로 이동을 하여도 연속적으로 통신이 가능하게 하는 기술이다. 즉, 이동통신 가입자가 특정 무선통신 구역에서 다른 무선통신 구역으로 이동할 때, 통화 채널을 자동으로 전환시켜 통화를 끊어지지 않게 해주는 기능을 말한다. 현재 모바일 네트워크의 가장 큰 문제점으로 지적되고 있는 핸드오버 시 통화 지연 현상 및 끊김 현상을 해결하기위해 빠르고 효율적인 핸드오버를 위한 많은 연구가 진행되고 있으며, 이러한 통화지연 및 끊김 현상은 모든 모바일 네트워크에서 필수적으로 해결해야 할 부분이다. 최근 모바일 네트워크의 기술 발달로 LTE(Long Term Evolution) 네트워크가 상용화되어 모바일에서도 고속의 데이터처리가 가능한 시대를 열었다. 하지만 LTE 네트워크 환경에서는 핸드오버 시 새로운 인증키가 생성되어야 한다. 이런 경우 핸드오버에 의해 인증 과정이 수행되어 인증 비용 및 지연시간이 발생하는 문제점이 있다. 본 논문에서는 UE가 oMME에서 nMME로 핸드오버 시 oMME는 인증키를 일정 시간동안 저장하여 인증키의 Life Time내에 기존의 MME로 다시 복귀한다면 저장된 인증키를 재사용을 하여 인증 절차를 간소화하는 효율적인 키캐싱 핸드오버 기법을 제안한다.
본 연구는 영상 샷의 크기에 따라 다양한 스토리를 갖고 있는 영상들을 분석하는 것을 목표로 한다. 따라서 영상 분석에 앞서, 익스트림 클로즈업 샷, 클로즈업 샷, 미디엄 샷, 풀 샷, 롱 샷 등 샷 사이즈에 따라 데이터셋을 분류하는 것이 선행되어야 한다. 하지만 일반적인 비디오 스토리 내의 샷 분포는 클로즈업 샷, 미들 샷, 풀 샷, 롱 샷 위주로 구성되어 있기 때문에 충분한 양의 익스트림 클로즈업 샷 데이터를 얻는 것이 상대적으로 쉽지 않다. 이를 해결하기 위해 본 연구에서는 관심 영역 (Region Of Interest: ROI) 탐지 기반의 이미지 크롭핑을 통해 익스트림 클로즈업 샷을 생성함으로써 영상 분석을 위한 데이터셋을 확보 방법을 제안한다. 제안 방법은 얼굴 인식과 세일리언시(Saliency)를 활용하여 이미지로부터 얼굴 영역 위주의 관심 영역을 탐지한다. 이를 통해 확보된 데이터셋은 인공신경망의 학습 데이터로 사용되어 샷 분류 모델 구축에 활용된다. 이러한 연구는 비디오 스토리에서 캐릭터들의 감정적 변화를 분석하고 시간이 지남에 따라 이야기의 구성이 어떻게 변화하는지 예측 가능하도록 도움을 줄 수 있다. 향후의 엔터테인먼트 분야에 AI 활용이 적극적으로 활용되어질 때 캐릭터, 대화, 이미지 편집 등의 자동 조정, 생성 등에 영향을 줄 것이라 예상한다.
번호판 자동인식(ALPR: Automatic License Plate Recognition)은 지능형 교통시스템 및 비디오 감시 시스템 등 많은 응용 분야에서 필요한 기술이다. 대부분의 연구는 자동차를 대상으로 번호판 감지 및 인식을 연구하였고, 오토바이를 대상으로 번호판 감지 및 인식은 매우 적은 편이다. 자동차의 경우 번호판이 차량의 전방 또는 후방 중앙에 위치하며 번호판의 뒷배경은 주로 단색으로 덜 복잡한 편이다. 그러나 오토바이의 경우 킥 스탠드를 이용하여 세우기 때문에 주차할 때 오토바이는 다양한 각도로 기울어져 있으므로 번호판의 글자 및 숫자 인식하는 과정이 훨씬 더 복잡하다. 본 논문에서는 다양한 각도로 주차된 오토바이 데이터세트에 대하여 번호판의 문자 인식 정확도를 높이기 위하여 2-스테이지 YOLOv2 알고리즘을 사용하여 오토바이 영역을 선 검출 후 번호판 영역을 검지한다. 인식률을 높이기 위해 앵커박스의 사이즈와 개수를 오토바이 특성에 맞추어 조절하였다. 그 후 기울어진 번호판을 검출한 후 영상 워핑 알고리즘을 적용하였다. 모의실험 결과, 기존 방식의 인식률이 47.74%에 비해 제안된 방식은 80.23%의 번호판의 인식률을 얻었다. 제안된 방법은 전체적으로 오토바이 번호판 특성에 맞는 앵커박스와 이미지 워핑을 통해서 다양한 기울기의 오토바이 번호판 문자 인식을 높일 수 있었다.
스마트팩토리를 구축하기 위해서는 CPPS(Cyber Physical Production System)의 구축은 필수적으로 동반되어야 하는 중요한 시스템이다. CPPS를 통해서 물리적 공장을 디지털 기반의 사이버 세상으로 옮겨오고 이를 지능적, 자율적으로 모니터링하고 제어하는 것이 스마트팩토리의 실체이다. 하지만 기존에 제시된 CPPS의 아키텍처들은 추상적인 모델링 형태의 아키텍처만 제시하고 있으며, 스마트팩토리에서 데이터를 수 집 교환을 위한 국제 표준인 OPC UA Framework(Open Platform Communication Unified Architecture)을 CPPS의 기본적인 체계로 적용한 연구는 부족하였다. 이에 아키텍처 구성 실제 공장에 적용 가능한 CPPS 아키텍처로 분산되어진 필드 데이터를 수집하여 중앙에 집중화 된 서버에서 집중된 데이터 처리가 되어야만 클라우드와 IoT를 모두 포함할 수 있는 CPPS를 구현 가능하다. 본 연구에서는 중앙 처리 OPC UA Framework을 준수한 OPC UA를 기술 체계를 기반으로 중앙의 OPC UA Server를 통해 CPPS 아키텍처를 구현하고 OPC UA 모델링 처리를 통해 CPPS 논리 프로세스와 데이터 처리 프로세스가 자동으로 생성되는 방법을 포함한 CPPS 아키텍처를 제안하고 모델 공장을 실제로 구현하여 그 성능과 가용성에 대해서 연구하였다.
딥 러닝의 대표 알고리즘에는 영상 인식에 주로 사용되는 CNN(Convolutional Neural Networks), 음성인식 및 자연어 처리에 주로 사용되는 RNN(Recurrent Neural Networks) 등이 있다. 이 중 CNN은 데이터로부터 자동으로 특징을 학습하는 알고리즘으로 특징 맵을 생성하는 필터까지 학습할 수 있어 영상 인식 분야에서 우수한 성능을 보이면서 주류를 이루게 되었다. 이후, 객체 탐지 분야에서는 CNN의 성능을 향상하고자 R-CNN 등 다양한 알고리즘이 등장하였으며, 최근에는 검출 속도 향상을 위해 YOLO(You Only Look Once), SSD(Single Shot Multi-box Detector) 등의 알고리즘이 제안되고 있다. 하지만 이러한 딥러닝 기반 탐지 네트워크는 정지 영상에서 탐지의 성공 여부를 결정하기 때문에 동영상에서의 안정적인 객체 추적 및 탐지를 위해서는 별도의 추적 기능이 필요하다. 따라서 본 논문에서는 동영상에서의 객체 추적 및 탐지 성능 향상을 위해 딥 러닝 기반 탐지 네트워크에 칼만 필터를 결합한 방법을 제안한다. 탐지 네트워크는 실시간 처리가 가능한 YOLO v2를 이용하였으며, 실험 결과 제안한 방법은 기존 YOLO v2 네트워크에 비교하여 7.7%의 IoU 성능 향상 결과를 보였고 FHD 영상에서 20 fps의 처리 속도를 보였다.
다품종 대량 생산 중소기업 공장에서는 제품의 종류가 다양하고 그 수량이 많기 때문에 재고의 관리를 위한 인력과 경비가 낭비되고 있다. 또한 재고의 현황을 실시간으로 확인 할 방법이 마련 되있지 않아서 재고의 과적재, 과부족 현상으로 인한 경제적 피해를 받고 있다. 실시간 데이터 수집 환경을 구축하기 위한 많은 방안이 있지만 대부분 구축비용과 시간이 중소 중견기업이 감당하기 어려운 수준이다. 그렇기 때문에 중소 중견기업의 스마트 공장은 구현되기 어려운 현실을 마주하고 있으며, 적절한 대책을 찾기 힘든 실정이다. 따라서 본 논문에서는 현재 생산품 관리 기술로 많이 채택되는 바코드, QR코드와 함께 라벨에 표기되어 있는 글자추출을 통해 기존 재고관리 방법의 확장에 대한 내용을 구현하고 그 효과를 평가하였다. 기술적으로는 컴퓨터 이미지 처리를 통해서 기존의 생산품의 입출고 관리를 위한 방법인 재고라벨 및 바코드에 대한 자동인식 및 분류를 하기 위한 OpenCV를 이용한 전처리, 구글 비젼 API의 OCR(Optical Character Recognition)기능을 통해서 글자를 추출하고, Zbar를 통해서 바코드를 인식할 수 있게 설계하였고, 값비싼 장비를 사용하지 않고 라즈베리파이를 통해 실시간 영상을 통한 인식으로 재고를 관리할 수 있는 방법을 제안한다.
최근에 빠르게 확산되고 있는 CCTV와 같은 영상기기들은 거의 모든 공공기관, 기업, 가정 등에서 비정상적인 상황을 감시하고 대처하기 위한 수단으로 활용되고 있다. 그러나 대부분의 경우 이상상황에 대한 인식은 모니터링하고 있는 사람에 의해 수동적으로 이루어지고 있어 즉각적인 대처가 미흡하며 사후 분석용으로만 활용되고 있다. 본 논문에서는 최신 딥러닝 기술과 실시간 전송기술을 활용하여 이벤트 발생시 스마트폰으로 이상 상황을 동영상과 함께 실시간으로 전송하는 동영상 감시 시스템의 개발 결과를 제시한다. 개발된 시스템은 오픈포즈 라이브러리를 이용하여 실시간으로 동영상으로 부터 인간 객체를 스켈레톤으로 모델링한 후, 딥러닝 기술을 이용하여 인간의 행동을 자동으로 인식하도록 구현하였다. 이를 위해 Caffe 프레임워크를 개발된 오픈포즈 라이브러리를 다크넷 기반으로 재구축하여 실시간 처리 능력을 대폭 향상 시켰으며, 실험을 통해 성능을 검증하였다. 본 논문에서 소개할 시스템은 정확하고 빠른 행동인식 성능과 확장성을 갖추고 있어 다양한 용도의 동영상 감시 시스템에 활용될 수 있을 것으로 기대된다.
최근 범죄예방과 안전문제 등으로 CCTV와 같은 영상장비가 다양하게 활용되고 있다. 영상기기들은 대부분 24시간 작동되기 때문에 경비 인력을 절감할 수 있지만, 녹화된 영상에서 특정 인물과 같은 객체를 검색하는 업무는 여전히 수동으로 이루어지고 있어, 실시간 검색이 요구되는 상황에서는 정확하고 빠른 대처가 미흡하다. 본 논문에서는 최신 딥러닝 기술과 OpenCV 라이브러리를 이용하여 사용자의 의해 입력된 의상정보를 바탕으로 특정인물을 영상에서 빠르게 검색하고, 그 결과를 실시간으로 전송하는 기술을 제안한다. 개발된 시스템은 YOLO 라이브러리를 이용하여 실시간으로 인물객체를 탐지한 후, 딥러닝 기술을 이용하여 인간의 의상을 상/하의로 구분하고 OpenCV 라이브러리를 통해 색을 검출하여 특정 인물 객체를 자동으로 인식하도록 구현하였다. 본 논문에서 개발한 시스템은 특정 의상을 갖춘 인물객체를 정확하고 빠르게 인식할 뿐만 아니라 기타 객체 인식에도 활용할 수 있는 확장성을 갖추고 있어 다양한 용도의 영상감시시스템에 활용될 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.