• Title/Summary/Keyword: 자동정보 추출

Search Result 1,996, Processing Time 0.024 seconds

Adjusting Weights of Single-word and Multi-word Terms for Keyphrase Extraction from Article Text

  • Kang, In-Su
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.8
    • /
    • pp.47-54
    • /
    • 2021
  • Given a document, keyphrase extraction is to automatically extract words or phrases which topically represent the content of the document. In unsupervised keyphrase extraction approaches, candidate words or phrases are first extracted from the input document, and scores are calculated for keyphrase candidates, and final keyphrases are selected based on the scores. Regarding the computation of the scores of candidates in unsupervised keyphrase extraction, this study proposes a method of adjusting the scores of keyphrase candidates according to the types of keyphrase candidates: word-type or phrase-type. For this, type-token ratios of word-type and phrase-type candidates as well as information content of high-frequency word-type and phrase-type candidates are collected from the input document, and those values are employed in adjusting the scores of keyphrase candidates. In experiments using four keyphrase extraction evaluation datasets which were constructed for full-text articles in English, the proposed method performed better than a baseline method and comparison methods in three datasets.

Automatic Lower Extremity Vessel Extraction based on Bone Elimination Technique in CT Angiography Images (CT 혈관 조영 영상에서 뼈 소거법 기반의 하지 혈관 자동 추출)

  • Kim, Soo-Kyung;Hong, Helen
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.12
    • /
    • pp.967-976
    • /
    • 2009
  • In this paper, we propose an automatic lower extremity vessel extraction based on rigid registration and bone elimination techniques in CT and CT angiography images. First, automatic partitioning of the lower extremity based on the anatomy is proposed to consider the local movement of the bone. Second, rigid registration based on distance map is performed to estimate the movement of the bone between CT and CT angiography images. Third, bone elimination and vessel masking techniques are proposed to remove bones in CT angiography image and to prevent the vessel near to bone from eroding. Fourth, post-processing based on vessel tracking is proposed to reduce the effect of misalignment and noises like a cartilage. For the evaluation of our method, we performed the visual inspection, accuracy measures and processing time. For visual inspection, the results of applying general subtraction, registered subtraction and proposed method are compared using volume rendering and maximum intensity projection. For accuracy evaluation, intensity distributions of CT angiography image, subtraction based method and proposed method are analyzed. Experimental result shows that bones are accurately eliminated and vessels are robustly extracted without the loss of other structure. The total processing time of thirteen patient datasets was 40 seconds on average.

Computer Vision and Neuro- Net Based Automatic Grading of a Mushroom(Lentinus Edodes L.) (컴퓨터시각과 신경회로망에 의한 표고등급의 자동판정)

  • Hwang, Heon;Lee, Choongho;Han, Joonhyun
    • Journal of Bio-Environment Control
    • /
    • v.3 no.1
    • /
    • pp.42-51
    • /
    • 1994
  • Visual features of a mushromm(Lentinus Edodes L.) are critical in sorting and grading as most agricultural products are. Because of its complex and various visual features, grading and sorting of mushrooms have been done manually by the human expert. Though actions involved in human grading look simple, it decision making underneath the simple action comes from the result of the complex neural processing of visual image. Recently, an artificial neural network has drawn a great attention because of its functional capability as a partial substitute of the human brain. Since most agricultural products are not uniquely defined in its physical properties and do not have a well defined job structure, the neuro -net based computer visual information processing is the promising approach toward the automation in the agricultural field. In this paper, first, the neuro - net based classification of simple geometric primitives were done and the generalization property of the network was tested for degraded primitives. And then the neuro-net based grading system was developed for a mushroom. A computer vision system was utilized for extracting and quantifying the qualitative visual features of sampled mushrooms. The extracted visual features of sampled mushrooms and their corresponding grades were used as input/output pairs for training the neural network. The grading performance of the trained network for the mushrooms graded previously by the expert were also presented.

  • PDF

Automatic hand gesture area extraction and recognition technique using FMCW radar based point cloud and LSTM (FMCW 레이다 기반의 포인트 클라우드와 LSTM을 이용한 자동 핸드 제스처 영역 추출 및 인식 기법)

  • Seung-Tak Ra;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.486-493
    • /
    • 2023
  • In this paper, we propose an automatic hand gesture area extraction and recognition technique using FMCW radar-based point cloud and LSTM. The proposed technique has the following originality compared to existing methods. First, unlike methods that use 2D images as input vectors such as existing range-dopplers, point cloud input vectors in the form of time series are intuitive input data that can recognize movement over time that occurs in front of the radar in the form of a coordinate system. Second, because the size of the input vector is small, the deep learning model used for recognition can also be designed lightly. The implementation process of the proposed technique is as follows. Using the distance, speed, and angle information measured by the FMCW radar, a point cloud containing x, y, z coordinate format and Doppler velocity information is utilized. For the gesture area, the hand gesture area is automatically extracted by identifying the start and end points of the gesture using the Doppler point obtained through speed information. The point cloud in the form of a time series corresponding to the viewpoint of the extracted gesture area is ultimately used for learning and recognition of the LSTM deep learning model used in this paper. To evaluate the objective reliability of the proposed technique, an experiment calculating MAE with other deep learning models and an experiment calculating recognition rate with existing techniques were performed and compared. As a result of the experiment, the MAE value of the time series point cloud input vector + LSTM deep learning model was calculated to be 0.262 and the recognition rate was 97.5%. The lower the MAE and the higher the recognition rate, the better the results, proving the efficiency of the technique proposed in this paper.

Development of BIM based LID Facilities Supply Auto-checking Module (BIM 기반 LID 시설 물량 자동 검토 모듈 개발)

  • Choi, Junwoo;Jung, Jongsuk;Lim, Seokhwa;Choi, Joungjoo;Kim, Shin;Hyun, Kyounghak
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.3
    • /
    • pp.195-206
    • /
    • 2017
  • Recently, Discussion about BIM based LID (Low Impact Development) facilities management system is activated because interest of LID technique for urban water cycle restoration is increasing. For this reason, this paper developed the auto-checking module of the BIM (Building Information Model) based supply output table. This module will be the foundation of the BIM based LID facilities total management system. The research order is composed like next follows: (1) Select target area, (2) Make BIM model of LID facilities and extract supply output table, (3) Develop comparison module, (4) Analysis results. As a result, the authors made 27 LID facilities and developed the supply output table comparison automation module. So, the authors could find differences of 2D design documents based supply output table and BIm based supply output table. So, the authors made an improvement suggestion of the design plan and could construct foundation of the BIM based LID facilities total management system.

Semantic Event Detection and Summary for TV Golf Program Using MPEG-7 Descriptors (MPEG-7 기술자를 이용한 TV 골프 프로그램의 이벤트검출 및 요약)

  • 김천석;이희경;남제호;강경옥;노용만
    • Journal of Broadcast Engineering
    • /
    • v.7 no.2
    • /
    • pp.96-106
    • /
    • 2002
  • We introduce a novel scheme to characterize and index events in TV golf programs using MPEG-7 descriptors. Our goal is to identify and localize the golf events of interest to facilitate highlight-based video indexing and summarization. In particular, we analyze multiple (low-level) visual features using domain-specific model to create a perceptual relation for semantically meaningful(high-level) event identification. Furthermore, we summarize a TV golf program with TV-Anytime segmentation metadata, a standard form of an XML-based metadata description, in which the golf events are represented by temporally localized segments and segment groups of highlights. Experimental results show that our proposed technique provides reasonable performance for identifying a variety of golf events.

Semi-Automatic Ontology Generation about XML Documents using Data Mining Method (데이터 마이닝 기법을 이용한 XML 문서의 온톨로지 반자동 생성)

  • Gu Mi-Sug;Hwang Jeong-Hee;Ryu Keun-Ho;Hong Jang-Eui
    • The KIPS Transactions:PartD
    • /
    • v.13D no.3 s.106
    • /
    • pp.299-308
    • /
    • 2006
  • As recently XML is becoming the standard of exchanging web documents and public documentations, XML data are increasing in many areas. To retrieve the information about XML documents efficiently, the semantic web based on the ontology is appearing. The existing ontology has been constructed manually and it was time and cost consuming. Therefore in this paper, we propose the semi-automatic ontology generation technique using the data mining technique, the association rules. The proposed method solves what type and how many conceptual relationships and determines the ontology domain level for the automatic ontology generation, using the data mining algorithm. Appying the association rules to the XML documents, we intend to find out the conceptual relationships to construct the ontology, finding the frequent patterns of XML tags in the XML documents. Using the conceptual ontology domain level extracted from the data mining, we implemented the semantic web based on the ontology by XML Topic Maps (XTM) and the topic map engine, TM4J.

A Study on Automatic Text Categorization of Web-Based Query Using Synonymy List (유사어 사전을 이용한 웹기반 질의문의 자동 범주화에 관한 연구)

  • Nam, Young-Joon;Kim, Gyu-Hwan
    • Journal of Information Management
    • /
    • v.35 no.4
    • /
    • pp.81-105
    • /
    • 2004
  • In this study, the way of the automatic text categorization on web-based query was implemented. X2 methods based on the Supported Vector Machine were used to test the efficiency of text categorization on queries. This test is carried out by the model using the Synonymy List. 713 synonyms were extracted manually from the tested documents. As the result of this test, the precision ratio and the recall ratio were decreased by -0.01% and by 8.53%, respectively whether the synonyms were assigned or not. It also shows that the Value of F1 Measure was increased by 4.58%. The standard deviation between the recall and precision ratio was improve by 18.39%.

Auto-tagging Method for Unlabeled Item Images with Hypernetworks for Article-related Item Recommender Systems (잡지기사 관련 상품 연계 추천 서비스를 위한 하이퍼네트워크 기반의 상품이미지 자동 태깅 기법)

  • Ha, Jung-Woo;Kim, Byoung-Hee;Lee, Ba-Do;Zhang, Byoung-Tak
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.10
    • /
    • pp.1010-1014
    • /
    • 2010
  • Article-related product recommender system is an emerging e-commerce service which recommends items based on association in contexts between items and articles. Current services recommend based on the similarity between tags of articles and items, which is deficient not only due to the high cost in manual tagging but also low accuracies in recommendation. As a component of novel article-related item recommender system, we propose a new method for tagging item images based on pre-defined categories. We suggest a hypernetwork-based algorithm for learning association between images, which is represented by visual words, and categories of products. Learned hypernetwork are used to assign multiple tags to unlabeled item images. We show the ability of our method with a product set of real-world online shopping-mall including 1,251 product images with 10 categories. Experimental results not only show that the proposed method has competitive tagging performance compared with other classifiers but also present that the proposed multi-tagging method based on hypernetworks improves the accuracy of tagging.

Application of Text Mining for Legal Information System: Focusing on Defamation Precedent (법률정보시스템을 위한 텍스트 마이닝 적용 방안 - 명예 훼손 판례를 대상으로 -)

  • Kim, Yong Hwan
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.54 no.1
    • /
    • pp.387-409
    • /
    • 2020
  • Precedents are data containing various types of information. In this study, I proposed a method to be utilized as legal information system for the public using automatic text analysis performed on precedents. It is carried out to analyze the defamation precedent using reference provision, judgment issues, major points of judgment, and reference precedents. As a result of the analysis, legal provisions used in defamation, key issues covered by defamation, and key cases are extracted. Although only applied to the Supreme Court case regarding defamation, the proposed methodology could be applied to various legal topics.