Annual Conference on Human and Language Technology
/
2014.10a
/
pp.112-116
/
2014
서답형 문항은 학생들의 종합적인 사고능력을 판단하는데 매우 유용하지만 채점할 때, 시간과 비용이 매우 많이 소요되고 채점자의 공정성을 확보해야 하는 어려움이 있다. 이러한 문제를 개선하기 위해 본 논문에서는 서답형 문항에 대한 자동채점 시스템을 제안한다. 본 논문에서 제안하는 시스템은 크게 언어 처리 단계와 채점 단계로 나뉜다. 첫 번째로 언어 처리 단계에서는 형태소 분석과 같은 한국어 정보처리 시스템을 이용하여 학생들의 답안을 분석한다. 두 번째로 채점 단계를 진행하는데 이 단계는 아래와 같은 순서로 진행된다. 1) 첫 번째 단계에서 분석 결과가 완전히 일치하는 답안들을 하나의 유형으로 간주하여 각 유형에 속한 답안의 빈도수가 높은 순서대로 정렬하여 인간 채점자가 고빈도 학생 답안을 수동으로 채점한다. 2) 현재까지 채점된 결과와 모범답안을 학습말뭉치로 간주하여 자질 추출 및 자질 가중치 학습을 수행한다. 3) 2)의 학습 결과를 토대로 미채점 답안들을 군집화하여 분류한다. 4) 분류된 결과 중에서 신뢰성이 높은 채점 답안에 대해서 인간 채점자가 확인하고 학습말뭉치에 추가한다. 5) 이와 같은 방법으로 미채점 답안이 존재하지 않을 때까지 반복한다. 제안된 시스템을 평가하기 위해서 2013년 학업성취도 평가의 사회(중3) 및 국어(고2) 과목의 서답형 문항을 사용하였다. 각 과목에서 1000개의 학생 답안을 추출하여 채점시간과 정확률을 평가하였다. 채점시간을 전체적으로 약 80% 이상 줄일 수 있었고 채점 정확률은 사회 및 국어 과목에 대해 각각 98.7%와 97.2%로 나타났다. 앞으로 자동 채점 시스템의 성능을 개선하고 인간 채점자의 집중도를 높일 수 있도록 인터페이스를 개선한다면 국가수준의 대단위 평가에 충분히 활용할 수 있을 것으로 생각한다.
The Journal of Korean Institute of Communications and Information Sciences
/
v.18
no.8
/
pp.1201-1212
/
1993
This paper presents the automatically extracting method of data item from name-cards using knowledge-base. In our approach, we utilize a structural information and a relational information between data items and elements with knowledge in the name-cards. To describe a hierarchical knowledge, we uses a flame structure and we propose an algorithim of domain classification to extract item and group candidate domains from the name-cards. From the experimental results, we obtain the extraction rate, 95%, for 100 samples.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2015.05a
/
pp.435-436
/
2015
In order to analyze and maximize efficiency of advertise, business put more importance on SNS. Especially, keyword extraction analyses based on Hadoop receive attention. The existing keyword extraction analyses have mostly MapReduce processes. Due to that, it causes problems data base would not update in real time like SNS system. In this study, we indicate limitations of the existing model and suggest new model using Storm technique to analyze data in real time.
Kim, Do-Hyung;Lee, Seon-Hwa;Lee, Hack-Man;Cha, Eui-Young
Annual Conference of KIPS
/
2000.10a
/
pp.247-250
/
2000
본 논문에서는 다양한 배경을 가지는 연속적인 얼굴 영상에서 실시간으로 눈의 위치를 자동적으로 추출하는 방법에 대하여 제시한다. 얼굴 요소 중에서 눈은 얼굴 인식 분야에 있어서 중요한 특징을 나타내는 주 요소로써 주로 히스토그램 분석과 색상 정보를 이용하여 눈 영역의 윤곽을 추출하는 방법이 제기되고 있다. 본 논문에서는 명암의 변화에도 비교적 적응력이 강한 이진화 기법을 사용하여 원영상을 이진화하고, 가변 템플릿(Deformable Template)방법을 사용하여 후보 영역을 추출한다. 이러한 후보영역들은 ART2 신경회로망을 이용하여 병합되며, 병합된 후보 영역들은 얼굴 요소의 기하학적 사전지식을 기반으로 검증되어, 시간에 따라 모양변화가 급변하는 눈 영역에 대한 실시간 추출을 가능하게 한다. 이상의 연구 결과는 교통사고 방지를 위한 눈의 졸림감지 등의 응용 시스템에 이용될 수 있다.
Proceedings of the Korean Information Science Society Conference
/
2011.06c
/
pp.240-243
/
2011
웹 문서를 비롯한 여러 가지 문서의 양이 급증함에 따라, 문서로부터 주요정보를 얻거나 자동으로 요약하는 연구들이 진행되어왔다. 특히, 문서를 요약하는 연구들은 문서에 존재하는 문장을 추출하는 방법과 요약문을 새롭게 생성하는 방법, 이렇게 크게 두 가지 방법으로 진행되었다. 이 연구에서는, 잠재 토픽 모델을 통하여 얻어낸 각 문장의 토픽 순열을 이용하여 문서를 대표하는 문장, 즉 요약문으로서 적합한 문장들을 추출하는 새로운 기법을 소개한다. 특히, 잠재 토픽 모델이 일반적으로 가지고 있는 속성인 토픽 순열의 교환성(exchangeability)을 배제하고 토픽의 순열을 이용하여 요약문을 추출해내므로 이 기법을 통하여 문서 혹은 문장의 구조를 반영한 요약문을 만들 수 있다.
Proceedings of the Korean Information Science Society Conference
/
2005.11b
/
pp.664-666
/
2005
이 논문에서는 기존의 지식관리시스템과 P2P방식을 접목한 P2P 지식관리시스템을 제안하고 제안된 시스템의 구조와 효율적으로 지식을 검색하기 위한 지능형 에이전트 대하여 기술하였다. 에이전트의 종류는 지식추출과 추천 에이전트가 있으며, 지식추출 에이전트는 대량의 데이터에서 지식을 추출하고, 개인 맞춤형 지식 추천 에이전트는 추출된 지식에서 사용자가 관심 있는 분야의 지식을 추천해 주는 것이다. 제안된 시스템의 구조와 에이전트 기법은 회사나 단체에 속한 사용자들이 방대한 데이터, 정보 또는 사용자들의 전문성과 경험으로 축적된 지식을 빠르고 쉽게 검색하게 해주어 양질의 지식을 사용자들이 추천 받아 사용하도록 함으로써 전체 구성원의 지식도를 높이며, 이러한 지식들을 재활용하여 더욱 많은 지식과 부가 가치를 창출하도록 지원하여 준다.
Annual Conference on Human and Language Technology
/
1999.10e
/
pp.137-141
/
1999
기술의 발달로 인해 수많은 용어들이 생성되고 있다. 이들은 대부분 전문용어이며 이는 비영어권 국가인 우리나라에 도입될 때, 외래어나 원어형태로 도입된다. 그런데 외래어나 원어형태의 전문용어는 형태소 분석기, 색인기 등의 시스템에서 오류의 원인이 되어, 이를 전처리기로 사용하는 자연언어처리 시스템의 성능을 저하 시킨다. 따라서 본 논문에서는 외래어나 원어로 된 전문용어를 처리하기 위한 전단계로서 문서에서 자동적으로 외래어를 인식하고 추출하는 방법을 제시한다. 본 논문에서 제시하는 방법은 외래어 추출 문제를 태깅문제로 변환하여, 태깅 문제를 해결하는 기법 중의 하나인 은닉마르코프 모델 (Hidden Markov Model)을 이용하여 외래어 추출을 하였다. 그 결과 94.90%의 재현률과 95.41%의 정확도를 나타내었다.
일반적으로 수치사진측량시스템을 통해 도심지역에서 자동으로 DEM을 추출하는 경우 해석도화원도에서 추출하는 DEM에 비하여 정확도가 크게 저하되어 도심지역에 대한 정사투영영상 생성이나 정사투영영상을 이용한 수치지도 제작시 품질저하의 요인이 되고 있다. 따라서 본 연구는 수치사진측량기법을 이용한 도심지역 지형공간정보 생성시 정확도에 영향을 크게 미치는 도심지역 DEM의 정확도를 향상시키는데 목적이 있다. 본 논문의 수행결과, 수치사진측량기법을 이용하여 도심지역에 대한 DEM 추출시 대상지역에 대한 지형분류를 통한 DEM추출방법을 적용하여 도심지역에 대한 DEM의 정확도를 향상시킬 수 있었다.
Annual Conference on Human and Language Technology
/
2015.10a
/
pp.90-95
/
2015
기계적 학습을 위해서는 일반적으로 많은 양의 수동 주석데이터(Manually Labeled Data)가 요구된다. 원격지도(Distant Supervision)는 현실적으로 부족한 주석데이터(Labeled Data)를 대신해 자동적으로 주석데이터를 수집하여 학습하는 접근 방식으로 관계 추출(Relation Extracion) 문제에 널리 활용되고 있다. 이때 필연적으로 많은 노이즈(Noise)가 발생되는데, 적합성 검증(Relevance Verification)을 통해 수집된 학습데이터를 정제함으로써 노이즈로 인한 변동성을 줄이고 결과적으로 향상된 성능을 보여주는 관계 추출 방법을 제시한다.
Proceedings of the Korean Information Science Society Conference
/
2004.10a
/
pp.793-795
/
2004
본 논문은 인물 도메인의 백과사전 지식베이스를 구축하기 위하여 백과사전 본문의 자연어 문장으로부터 인물 표제어의 특징을 잘 나타내는 속성 값을 인식하여 추출하는 방법에 관하여 기술한다. 속성은 인물 공통 및 세부 분야별로 총 52개의 속성을 정의하였고 이를 태그셋으로 정의하여 1천 문서의 백과사전 인물 속성태깅코퍼스를 구축하였다. 속성태깅코퍼스로부터 반자동으로 약 1천 8백여 개의 속성패턴을 추출하였고 백과사전 인물 표제어 24,848개에 대해 속성패턴을 적용하여 지식베이스를 구축하였다. 추출성능은 f-score 0.68의 결과를 나타내었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.