• Title/Summary/Keyword: 자동정보 추출

Search Result 1,996, Processing Time 0.033 seconds

Development of recognition system of a slab number in the steel production line (철강공정 슬라브번호 자동인식 시스템 개발)

  • 이종학;박상국;이문락
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.986-989
    • /
    • 2003
  • In the steel production line, the molten metal of a furnace is transformed into slab material and then move to the hot strip line, This paper describe about the real time recognition system of material management number, which is marked at the surface of a slab in the steel production line. This recognition processing should be performed before the slab is moved to the hot strip line. This system include following recognition steps. First, we remove noise from the captured slab image by use pre-filter. Second, we extract rough area, which is include slab number and then, we extract individual number area. Finally, we recognize material management number by use KLT(Karhunen-Loeve transform) algorithm. We applied our system to the real slave image, which was captured in the process line. In the results, we recognized slave number to the 94% accuracy.

  • PDF

Intra-Sentence Segmentation using Maximum Entropy Model for Efficient Parsing of English Sentences (효율적인 영어 구문 분석을 위한 최대 엔트로피 모델에 의한 문장 분할)

  • Kim Sung-Dong
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.5
    • /
    • pp.385-395
    • /
    • 2005
  • Long sentence analysis has been a critical problem in machine translation because of high complexity. The methods of intra-sentence segmentation have been proposed to reduce parsing complexity. This paper presents the intra-sentence segmentation method based on maximum entropy probability model to increase the coverage and accuracy of the segmentation. We construct the rules for choosing candidate segmentation positions by a teaming method using the lexical context of the words tagged as segmentation position. We also generate the model that gives probability value to each candidate segmentation positions. The lexical contexts are extracted from the corpus tagged with segmentation positions and are incorporated into the probability model. We construct training data using the sentences from Wall Street Journal and experiment the intra-sentence segmentation on the sentences from four different domains. The experiments show about $88\%$ accuracy and about $98\%$ coverage of the segmentation. Also, the proposed method results in parsing efficiency improvement by 4.8 times in speed and 3.6 times in space.

Implementation of Digitizing System for Sea Level Measurements Record (조위관측 기록 디지타이징 시스템 구현)

  • Yu, Young-Jung;Park, Seong-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1907-1917
    • /
    • 2010
  • It is much needed research for ocean scientists to implement a digitizing system that effectively extracts and digitializes sea level records accumulated from the past. The main difficulty of such a system is huge anount of data to be processed. In this paper, we implement a digitizing system to handle such mass-data of sea level records. This system consists of a pre-process step, a digitizing step and a post-process step. In pre-process step, the system adjusts skewnesses of scanned images and normalizes the size of images automatically. Then, it extracts a graph area from images and thins the graph area in digitizing step. Finally, in the post-process step, the system tests the reliability. It is cost-effective and labour-reducing software for scientists not wasting their time to such boring manual digitizing jobs.

An Automatic Extraction Scheme of Dependency Relations between Web Components and Web Resources in Java Web Applications (자바 웹 앱에서 웹 컴포넌트와 웹 자원의 의존 관계를 자동으로 추출하는 기법)

  • Oh, Jaewon;Lee, Seunghyun;Kim, Ah Hyoung;Ahn, Woo Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.458-470
    • /
    • 2018
  • As the requirements of web apps become complex and rapidly changing, the maintenance of web apps becomes more important. However, web apps have a problem that more often than not there is not enough documentation to understand and maintain them. Thus, their effective maintenance requires models that represent their internal behavior occurring when they dynamically generate web pages. Previous works identify web components (such as JSPs and Servlets) as participants in the behavior but not web resources (such as images, CSS files, and JavaScript files). Moreover, they do not identify dependency relations between web components and web resources. This paper dynamically analyzes Java web apps to extract such dependency relations, which are included in our graph model for page generation. Case studies using open-source web apps show the applicability of the proposed approach.

A Design on Informal Big Data Topic Extraction System Based on Spark Framework (Spark 프레임워크 기반 비정형 빅데이터 토픽 추출 시스템 설계)

  • Park, Kiejin
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.11
    • /
    • pp.521-526
    • /
    • 2016
  • As on-line informal text data have massive in its volume and have unstructured characteristics in nature, there are limitations in applying traditional relational data model technologies for data storage and data analysis jobs. Moreover, using dynamically generating massive social data, social user's real-time reaction analysis tasks is hard to accomplish. In the paper, to capture easily the semantics of massive and informal on-line documents with unsupervised learning mechanism, we design and implement automatic topic extraction systems according to the mass of the words that consists a document. The input data set to the proposed system are generated first, using N-gram algorithm to build multiple words to capture the meaning of the sentences precisely, and Hadoop and Spark (In-memory distributed computing framework) are adopted to run topic model. In the experiment phases, TB level input data are processed for data preprocessing and proposed topic extraction steps are applied. We conclude that the proposed system shows good performance in extracting meaningful topics in time as the intermediate results come from main memories directly instead of an HDD reading.

Automated Method of Landmark Extraction for Protein 2DE Images based on Multi-dimensional Clustering (다차원 클러스터링 기반의 단백질 2DE 이미지에서의 자동화된 기준점 추출 방법)

  • Shim, Jung-Eun;Lee, Won-Suk
    • The KIPS Transactions:PartD
    • /
    • v.12D no.5 s.101
    • /
    • pp.719-728
    • /
    • 2005
  • 2-dimensional electrophoresis(2DE) is a separation technique to identify proteins contained in a sample. However, the image is very sensitive to its experimental conditions as well as the quality of scanning. In order to adjust the possible variation of spots in a particular image, a user should manually annotate landmark spots on each gel image to analyze the spots of different images together. However, this operation is an error-prone and tedious job. This thesis develops an automated method of extracting the landmark spots of an image based on landmark profile. The landmark profile is created by clustering the previously identified landmarks of sample images of the same type. The profile contains the various properties of clusters identified for each landmark. When the landmarks of a new image need to be fount all the candidate spots of each landmark are first identified by examining the properties of its clusters. Subsequently, all the landmark spots of the new image are collectively found by the well-known optimization algorithm $A^*$. The performance of this method is illustrated by various experiments on real 2DE images of mouse's brain-tissues.

Extraction of Worker Behavior at Manufacturing Site using Mask R-CNN and Dense-Net (Mask R-CNN과 Dense-Net을 이용한 제조 현장에서의 작업자 행동 추출)

  • Rijayanti, Rita;Hwang, Mintae;Jin, Kyohong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.150-153
    • /
    • 2022
  • This paper reports a technique that automatically extracts object shapes through Dense-Net, and subsequently, detects the objects using Mask R-CNN in a manufacturing site, in which workers and objects are mixed. It is based on the customized factory dataset by targeting workers, machines, tools, control boxes, and products as the objects. Mask R-CNN supports multi-object recognition as a well-known object recognition method, while Dense-Net effectively extracts a feature from multiple and overlapping objects. After immediate implementation using the two technologies, the object is naturally extracted from a still image of the manufacturing site to describe image. Afterwards, the result is planned to be used to detect workers' abnormal behavior by adding a label on the objects.

  • PDF

Research on Object Detection Library Utilizing Spatial Mapping Function Between Stream Data In 3D Data-Based Area (3D 데이터 기반 영역의 stream data간 공간 mapping 기능 활용 객체 검출 라이브러리에 대한 연구)

  • Gyeong-Hyu Seok;So-Haeng Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.551-562
    • /
    • 2024
  • This study relates to a method and device for extracting and tracking moving objects. In particular, objects are extracted using different images between adjacent images, and the location information of the extracted object is continuously transmitted to provide accurate location information of at least one moving object. It relates to a method and device for extracting and tracking moving objects based on tracking moving objects. People tracking, which started as an expression of the interaction between people and computers, is used in many application fields such as robot learning, object counting, and surveillance systems. In particular, in the field of security systems, cameras are used to recognize and track people to automatically detect illegal activities. The importance of developing a surveillance system, that can detect, is increasing day by day.

A Study on the Identification and Classification of Relation Between Biotechnology Terms Using Semantic Parse Tree Kernel (시맨틱 구문 트리 커널을 이용한 생명공학 분야 전문용어간 관계 식별 및 분류 연구)

  • Choi, Sung-Pil;Jeong, Chang-Hoo;Chun, Hong-Woo;Cho, Hyun-Yang
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.45 no.2
    • /
    • pp.251-275
    • /
    • 2011
  • In this paper, we propose a novel kernel called a semantic parse tree kernel that extends the parse tree kernel previously studied to extract protein-protein interactions(PPIs) and shown prominent results. Among the drawbacks of the existing parse tree kernel is that it could degenerate the overall performance of PPI extraction because the kernel function may produce lower kernel values of two sentences than the actual analogy between them due to the simple comparison mechanisms handling only the superficial aspects of the constituting words. The new kernel can compute the lexical semantic similarity as well as the syntactic analogy between two parse trees of target sentences. In order to calculate the lexical semantic similarity, it incorporates context-based word sense disambiguation producing synsets in WordNet as its outputs, which, in turn, can be transformed into more general ones. In experiments, we introduced two new parameters: tree kernel decay factors, and degrees of abstracting lexical concepts which can accelerate the optimization of PPI extraction performance in addition to the conventional SVM's regularization factor. Through these multi-strategic experiments, we confirmed the pivotal role of the newly applied parameters. Additionally, the experimental results showed that semantic parse tree kernel is superior to the conventional kernels especially in the PPI classification tasks.

Development of Android Smartphone App for Corner Point Feature Extraction using Remote Sensing Image (위성영상정보 기반 코너 포인트 객체 추출 안드로이드 스마트폰 앱 개발)

  • Kang, Sang-Goo;Lee, Ki-Won
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.1
    • /
    • pp.33-41
    • /
    • 2011
  • In the information communication technology, it is world-widely apparent that trend movement from internet web to smartphone app by users demand and developers environment. So it needs kinds of appropriate technological responses from geo-spatial domain regarding this trend. However, most cases in the smartphone app are the map service and location recognition service, and uses of geo-spatial contents are somewhat on the limited level or on the prototype developing stage. In this study, app for extraction of corner point features using geo-spatial imagery and their linkage to database system are developed. Corner extraction is based on Harris algorithm, and all processing modules in database server, application server, and client interface composing app are designed and implemented based on open source. Extracted corner points are applied LOD(Level of Details) process to optimize on display panel. Additional useful function is provided that geo-spatial imagery can be superimposed with the digital map in the same area. It is expected that this app can be utilized to automatic establishment of POI (Point of Interests) or point-based land change detection purposes.