Abstract
2-dimensional electrophoresis(2DE) is a separation technique to identify proteins contained in a sample. However, the image is very sensitive to its experimental conditions as well as the quality of scanning. In order to adjust the possible variation of spots in a particular image, a user should manually annotate landmark spots on each gel image to analyze the spots of different images together. However, this operation is an error-prone and tedious job. This thesis develops an automated method of extracting the landmark spots of an image based on landmark profile. The landmark profile is created by clustering the previously identified landmarks of sample images of the same type. The profile contains the various properties of clusters identified for each landmark. When the landmarks of a new image need to be fount all the candidate spots of each landmark are first identified by examining the properties of its clusters. Subsequently, all the landmark spots of the new image are collectively found by the well-known optimization algorithm $A^*$. The performance of this method is illustrated by various experiments on real 2DE images of mouse's brain-tissues.
2DE는 조직 내의 단백질을 규명하는 단백질 분리 기술이다. 그러나 2DE 이미지는 실험 조건, 스캐닝 상태와 같은 환경에 민감하게 영향을 받는다. 이러한 이미지간의 변화를 극복하기 위해서 사용자는 각각의 서로 다른 이미지에 수동으로 기준점을 입력해주어야 한다. 그러나 이 과정은 에러를 발생시키며 긴 시간을 요구하는 작업으로, 빠른 분석에 장애 요인이 된다. 따라서 본 논문에서는 기준점 프로파일에 기반 하여 기준점을 자동으로 추출하는 방법을 개발하였다. 기준점 프로파일은 이미 확인된 이미지들의 기준점들에 대한 클러스터링 방법을 통하여 생성하며, 각 클러스터의 다양한 속성을 정의한다. 새로운 이미지가 입력되면 기준점의 후보 스팟들을 대상으로 프로파일과 비교하석 기준점을 추출한다. 그리고 $A^*$알고리즘을 이용하여 기준점 선정 과정을 최적화한다. 본 논문에서는 실제 사람의 간 조직 이미지를 이용하여 기준점 추출 방법의 성능을 분석하였다