DOI QR코드

DOI QR Code

Automated Method of Landmark Extraction for Protein 2DE Images based on Multi-dimensional Clustering

다차원 클러스터링 기반의 단백질 2DE 이미지에서의 자동화된 기준점 추출 방법

  • 심정은 (연세대학교 컴퓨터과학과) ;
  • 이원석 (연세대학교 컴퓨터과학과)
  • Published : 2005.10.01

Abstract

2-dimensional electrophoresis(2DE) is a separation technique to identify proteins contained in a sample. However, the image is very sensitive to its experimental conditions as well as the quality of scanning. In order to adjust the possible variation of spots in a particular image, a user should manually annotate landmark spots on each gel image to analyze the spots of different images together. However, this operation is an error-prone and tedious job. This thesis develops an automated method of extracting the landmark spots of an image based on landmark profile. The landmark profile is created by clustering the previously identified landmarks of sample images of the same type. The profile contains the various properties of clusters identified for each landmark. When the landmarks of a new image need to be fount all the candidate spots of each landmark are first identified by examining the properties of its clusters. Subsequently, all the landmark spots of the new image are collectively found by the well-known optimization algorithm $A^*$. The performance of this method is illustrated by various experiments on real 2DE images of mouse's brain-tissues.

2DE는 조직 내의 단백질을 규명하는 단백질 분리 기술이다. 그러나 2DE 이미지는 실험 조건, 스캐닝 상태와 같은 환경에 민감하게 영향을 받는다. 이러한 이미지간의 변화를 극복하기 위해서 사용자는 각각의 서로 다른 이미지에 수동으로 기준점을 입력해주어야 한다. 그러나 이 과정은 에러를 발생시키며 긴 시간을 요구하는 작업으로, 빠른 분석에 장애 요인이 된다. 따라서 본 논문에서는 기준점 프로파일에 기반 하여 기준점을 자동으로 추출하는 방법을 개발하였다. 기준점 프로파일은 이미 확인된 이미지들의 기준점들에 대한 클러스터링 방법을 통하여 생성하며, 각 클러스터의 다양한 속성을 정의한다. 새로운 이미지가 입력되면 기준점의 후보 스팟들을 대상으로 프로파일과 비교하석 기준점을 추출한다. 그리고 $A^*$알고리즘을 이용하여 기준점 선정 과정을 최적화한다. 본 논문에서는 실제 사람의 간 조직 이미지를 이용하여 기준점 추출 방법의 성능을 분석하였다

Keywords

References

  1. GOrg, A, Obermaier, C, Boguth, G., Harder, A., Scheibe, B., Wildgruber, R. and Weiss, W., The Current State of Two-Dimensional Electrophoresis with Immobilized pH Gradients, Electrophoresis, Vol.21, No.6, pp.1037-53, 2000 https://doi.org/10.1002/(SICI)1522-2683(20000401)21:6<1037::AID-ELPS1037>3.0.CO;2-V
  2. Corbett, J, Dunn, MJ, Posch, A. and GOrg, A, Positional Reproducibility of Protein Spots in Two-Dimensional Polyacrylamide Gel Electrophoresis Using Immobilized pH Gradient Iso-Electric Focusing in The First Dimension: An Interlaboratory Comparison, Electrophoresis, Vol. 15, No.8-9, pp.1205-11, 1994 https://doi.org/10.1002/elps.11501501182
  3. Gygi, SP, Rist, B., Gerber, SA, Turecek, F., Gelb, MH and Aebersold, R., Quantitative Analysis of Complex Protein Mixtures Using Isotope-Coded Affinity Tags, Nat.Biotech, Vol.17, No.10, pp.994-9, 1999 https://doi.org/10.1038/13690
  4. Cagney, G. and Emili, A, De Novo Peptide Sequencing and Quantitative Profiling of Complex Protein Mixtures Using Mass-Coded Abundance Tagging, Nat Biotech., Vol.20, No. 2, 163-70, 2002 https://doi.org/10.1038/nbt0202-163
  5. http://www.genebio.com/products/2d_image.html
  6. http://wvw.nonlinear.com/products/2d/progenesis/overview.asp
  7. Takahashi, K, Nakazawa, M., Watanabe, Y and Konagaya, A, Automated Processing of 2-D Gel Electrophoretograms of Genomic DNA for Hunting Pathogenic DNA Molecular Changes, Genome Informatics 1999, 121 - 132, Tokyo, Japan, December, 1999
  8. Toussaint, G.T., The Relative Neighborhood Graph of Finite Planar Set, Pattern Recognition, Vol.12, No.4, pp.261-8, 1980 https://doi.org/10.1016/0031-3203(80)90066-7
  9. Hayashizaki, Y., Hirotsune, S., Okazaki, Y, Hatada, I., Shibata, H., Kawai, J, Hirose, K.,Watanabe, S., Fushiki, S. and Wada, S., Restriction Landmark Genomic Scanning Method and Its Various Applications, Electrophoresis, Vol. 14, No.4, 251-8, 1993 https://doi.org/10.1002/elps.1150140145
  10. Hoffmann, F., Kriegel, K. and Wenk, C., Matching 2D Patterns of Protein Spots, Proceedings of the 14th Annual Symposium on Computational Geometry, 231-9, Minnesota, U.S.A., June, 1998 https://doi.org/10.1145/276884.276911
  11. Ester, M., Kriegel, H.-P., Sander, J. and Xu, X., A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, Proceedings of the 2nd lnternational Conference on Knowledge Discovery and Data Mining, 226-31, Portland, U.S.A., August, 1996
  12. Jiawei Han and Micheline Kamber, DataMining: Concepts and Techniques, 2000
  13. Nils J. Nilsson and Morgan, K., Artificial Intelligence: A New Synthesis, 1998
  14. Labia, W.J., Quass, D. and Adelberg, B., Physical Database Design For Data Warehouses, Proceedings of the 13th International Conference on Data Engineering, 277-88, Birmingham, U.K., April, 1997
  15. Ester, M., Kriegel, H. - P., Sander, J., Wimmer, M. and Xu X., Incremental Clustering for Mining in a Data Warehousing Environment, Proceedings of the 24th lnternational Conference on Very Large Data Bases, 323-33, New York City, U.S.A., August, 1998