• Title/Summary/Keyword: 자동시스템

Search Result 8,948, Processing Time 0.04 seconds

Multi-Path Routing Algorithm for Cost-Effective Transactions in Automated Market Makers (자동화 마켓 메이커에서 비용 효율적인 거래를 위한 다중 경로 라우팅 알고리즘)

  • Jeong, Hyun Bin;Park, Soo Young
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.8
    • /
    • pp.269-280
    • /
    • 2022
  • With the rise of a decentralized finance market (so called, DeFi) using blockchain technology, users and capital liquidity of decentralized finance applications are increasing significantly. The Automated Market Maker (AMM) is a protocol that automatically calculates the asset price based on the liquidity of the decentralized trading platform, and is currently most commonly used in the decentralized exchanges (DEX), since it can proceed the transactions by utilizing the liquidity pool of the trading platform even if the buyers and sellers do not exist at the same time. However, Automated Market Maker have some disadvantages since the cost efficiency of each transaction using Automated Market Maker depends on the liquidity size of some liquidity pools used for the transaction, so the smaller the size of the liquidity pool and the larger the transaction size, the smaller the cost efficiency of the trade. To solve this problem, some platforms are adopting Transaction Path Routing Algorithm that bypasses transaction path to other liquidity pools that have relatively large size to improve cost efficiency, but this algorithm can be further improved because it uses only a single transaction path to proceed each transaction. In addition to just bypassing transaction path, in this paper we proposed a Multi-Path Routing Algorithm that uses multiple transaction paths simultaneously by distributing transaction size, and showed that the cost efficiency of transactions can be further improved in the Automated Market Maker-based trading environment.

A Study on the Optimization of Main Dimensions of a Ship by Design Search Techniques based on the AI (AI 기반 설계 탐색 기법을 통한 선박의 주요 치수 최적화)

  • Dong-Woo Park;Inseob Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1231-1237
    • /
    • 2022
  • In the present study, the optimization of the main particulars of a ship using AI-based design search techniques was investigated. For the design search techniques, the SHERPA algorithm by HEEDS was applied, and CFD analysis using STAR-CCM+ was applied for the calculation of resistance performance. Main particulars were automatically transformed by modifying the main particulars of the ship at the stage of preprocessing using JAVA script and Python. Small catamaran was chosen for the present study, and the main dimensions of the length, breadth, draft of demi-hull, and distance between demi-hulls were considered as design variables. Total resistance was considered as an objective function, and the range of displaced volume considering the arrangement of the outfitting system was chosen as the constraint. As a result, the changes in the individual design variables were within ±5%, and the total resistance of the optimized hull form was decreased by 11% compared with that of the existing hull form. Throughout the present study, the resistance performance of small catamaran could be improved by the optimization of the main dimensions without direct modification of the hull shape. In addition, the application of optimization using design search techniques is expected for the improvement in the resistance performance of a ship.

Malicious Traffic Classification Using Mitre ATT&CK and Machine Learning Based on UNSW-NB15 Dataset (마이터 어택과 머신러닝을 이용한 UNSW-NB15 데이터셋 기반 유해 트래픽 분류)

  • Yoon, Dong Hyun;Koo, Ja Hwan;Won, Dong Ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.2
    • /
    • pp.99-110
    • /
    • 2023
  • This study proposed a classification of malicious network traffic using the cyber threat framework(Mitre ATT&CK) and machine learning to solve the real-time traffic detection problems faced by current security monitoring systems. We applied a network traffic dataset called UNSW-NB15 to the Mitre ATT&CK framework to transform the label and generate the final dataset through rare class processing. After learning several boosting-based ensemble models using the generated final dataset, we demonstrated how these ensemble models classify network traffic using various performance metrics. Based on the F-1 score, we showed that XGBoost with no rare class processing is the best in the multi-class traffic environment. We recognized that machine learning ensemble models through Mitre ATT&CK label conversion and oversampling processing have differences over existing studies, but have limitations due to (1) the inability to match perfectly when converting between existing datasets and Mitre ATT&CK labels and (2) the presence of excessive sparse classes. Nevertheless, Catboost with B-SMOTE achieved the classification accuracy of 0.9526, which is expected to be able to automatically detect normal/abnormal network traffic.

Breeding and characterization of a new white cultivar of Pleurotus ostreatus, 'Sena' (갓이 백색인 느타리 신품종 '세나'의 육성 및 특성)

  • Minji Oh;Min-Sik Kim;Ji-Hoon Im;Youn-Lee Oh
    • Journal of Mushroom
    • /
    • v.21 no.3
    • /
    • pp.179-184
    • /
    • 2023
  • The development of automated bottle cultivation systems has facilitated the large-scale production of Pleurotus ostreatus, a commonly cultivated oyster mushroom species in South Korea. However, as the consumption of this product is decreasing and production quantities are exceeding demand, farmers are seeking various other mushroom types and cultivars. In response to this, we have developed a new oyster mushroom cultivar named 'Sena'. This high-yielding cultivar has a white pileus and excellent quality. The white oyster mushroom cultivars 'Goni' and 'Miso' were selected as parental strains from the genetic resources of the National Institute of Horticultural and Herbal Science's Mushroom Division. By crossing their monokaryons, hybrids were developed and subjected to cultivation trials and characteristic evaluations to select the superior cultivar. The optimal temperature for 'Sena' mycelial growth is 25-30℃, with inhibition occurring at temperatures above 30℃, whereas the temperature for mushroom growth is 14-18℃. The mushrooms grow in clusters, with the white pileus having a shallow funnel shape. Optimal mycelial growth occurs in malt extract agar medium. When cultivated in 1,100 cc bottles, the 'Sena' cultivar had 35 available individuals, surpassing the number 16 available from the control cultivar 'Goni'. The yield per bottle also increased by approximately 157 g, a 24% increase over the control cultivar amount. When 300 g samples of harvested mushrooms were packed and stored at 4℃ in a cold storage facility for 28 days, the weight loss rate of 'Sena' was approximately 4.22%, lower than that of 'Goni'. Moreover, the changes in pileus and stipe whiteness (measuring 6.99 and 8.33, respectively) were also lower than those of the control cultivar. Since the appearance of a white cap is crucial for quality assessment, the 'Sena' cultivar is superior to the 'Goni' cultivar in terms of both weight and quality after undergoing low-temperature storage.

Development of Simulator for Analyzing Intercept Performance of Surface-to-air Missile (지대공미사일 요격 성능 분석 시뮬레이터 개발)

  • Kim, Ki-Hwan;Seo, Yoon-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.63-71
    • /
    • 2010
  • In modern war, Intercept Performance of SAM(Surface to Air Missile) is gaining importance as range and precision of Missile and Guided Weapon on information warfare have been improved. An aerial defence system using Surface-to-air Radar and Guided Missile is needed to be built for prediction and defense from threatening aerial attack. When developing SAM, M&S is used to free from a time limit and a space restriction. M&S is widely applied to education, training, and design of newest Weapon System. This study was conducted to develop simulator for evaluation of Intercept Performance of SAM. In this study, architecture of Intercept Performance of SAM analysis simulator for estimation of Intercept Performance of various SAM was suggested and developed. The developed Intercept Performance of SAM analysis simulator was developed by C++ and Direct3D, and through 3D visualization using the Direct3D, it shows procedures of the simulation on a user animation window. Information about design and operation of Fighting model is entered through input window of the simulator, and simulation engine consisted of Object Manager, Operation Manager, and Integrated Manager conducts modeling and simulation automatically using the information, so the simulator gives user feedback in a short time.

Acceleration of Viewport Extraction for Multi-Object Tracking Results in 360-degree Video (360도 영상에서 다중 객체 추적 결과에 대한 뷰포트 추출 가속화)

  • Heesu Park;Seok Ho Baek;Seokwon Lee;Myeong-jin Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.3
    • /
    • pp.306-313
    • /
    • 2023
  • Realistic and graphics-based virtual reality content is based on 360-degree videos, and viewport extraction through the viewer's intention or automatic recommendation function is essential. This paper designs a viewport extraction system based on multiple object tracking in 360-degree videos and proposes a parallel computing structure necessary for multiple viewport extraction. The viewport extraction process in 360-degree videos is parallelized by composing pixel-wise threads, through 3D spherical surface coordinate transformation from ERP coordinates and 2D coordinate transformation of 3D spherical surface coordinates within the viewport. The proposed structure evaluated the computation time for up to 30 viewport extraction processes in aerial 360-degree video sequences and confirmed up to 5240 times acceleration compared to the CPU-based computation time proportional to the number of viewports. When using high-speed I/O or memory buffers that can reduce ERP frame I/O time, viewport extraction time can be further accelerated by 7.82 times. The proposed parallelized viewport extraction structure can be applied to simultaneous multi-access services for 360-degree videos or virtual reality contents and video summarization services for individual users.

Escape Route Prediction and Tracking System using Artificial Intelligence (인공지능을 활용한 도주경로 예측 및 추적 시스템)

  • Yang, Bum-suk;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.225-227
    • /
    • 2022
  • Now In Seoul, about 75,000 CCTVs are installed in 25 district offices. Each ward office in Seoul has built a control center for CCTV control and is building information such as people, vehicle types, license plate recognition and color classification into big data through 24-hour artificial intelligence intelligent image analysis. Seoul Metropolitan Government has signed MOUs with the Ministry of Land, Infrastructure and Transport, the National Police Agency, the Fire Service, the Ministry of Justice, and the military base to enable rapid response to emergency/emergency situations. In other words, we are building a smart city that is safe and can prevent disasters by providing CCTV images of each ward office. In this paper, the CCTV image is designed to extract the characteristics of the vehicle and personnel when an incident occurs through artificial intelligence, and based on this, predict the escape route and enable continuous tracking. It is designed so that the AI automatically selects and displays the CCTV image of the route. It is designed to expand the smart city integration platform by providing image information and extracted information to the adjacent ward office when the escape route of a person or vehicle related to an incident is expected to an area other than the relevant jurisdiction. This paper will contribute as basic data to the development of smart city integrated platform research.

  • PDF

Development and Validation of AI Image Segmentation Model for CT Image-Based Sarcopenia Diagnosis (CT 영상 기반 근감소증 진단을 위한 AI 영상분할 모델 개발 및 검증)

  • Lee Chung-Sub;Lim Dong-Wook;Noh Si-Hyeong;Kim Tae-Hoon;Ko Yousun;Kim Kyung Won;Jeong Chang-Won
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.3
    • /
    • pp.119-126
    • /
    • 2023
  • Sarcopenia is not well known enough to be classified as a disease in 2021 in Korea, but it is recognized as a social problem in developed countries that have entered an aging society. The diagnosis of sarcopenia follows the international standard guidelines presented by the European Working Group for Sarcopenia in Older People (EWGSOP) and the d Asian Working Group for Sarcopenia (AWGS). Recently, it is recommended to evaluate muscle function by using physical performance evaluation, walking speed measurement, and standing test in addition to absolute muscle mass as a diagnostic method. As a representative method for measuring muscle mass, the body composition analysis method using DEXA has been formally implemented in clinical practice. In addition, various studies for measuring muscle mass using abdominal images of MRI or CT are being actively conducted. In this paper, we develop an AI image segmentation model based on abdominal images of CT with a relatively short imaging time for the diagnosis of sarcopenia and describe the multicenter validation. We developed an artificial intelligence model using U-Net that can automatically segment muscle, subcutaneous fat, and visceral fat by selecting the L3 region from the CT image. Also, to evaluate the performance of the model, internal verification was performed by calculating the intersection over union (IOU) of the partitioned area, and the results of external verification using data from other hospitals are shown. Based on the verification results, we tried to review and supplement the problems and solutions.

A Comparison of Image Classification System for Building Waste Data based on Deep Learning (딥러닝기반 건축폐기물 이미지 분류 시스템 비교)

  • Jae-Kyung Sung;Mincheol Yang;Kyungnam Moon;Yong-Guk Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.199-206
    • /
    • 2023
  • This study utilizes deep learning algorithms to automatically classify construction waste into three categories: wood waste, plastic waste, and concrete waste. Two models, VGG-16 and ViT (Vision Transformer), which are convolutional neural network image classification algorithms and NLP-based models that sequence images, respectively, were compared for their performance in classifying construction waste. Image data for construction waste was collected by crawling images from search engines worldwide, and 3,000 images, with 1,000 images for each category, were obtained by excluding images that were difficult to distinguish with the naked eye or that were duplicated and would interfere with the experiment. In addition, to improve the accuracy of the models, data augmentation was performed during training with a total of 30,000 images. Despite the unstructured nature of the collected image data, the experimental results showed that VGG-16 achieved an accuracy of 91.5%, and ViT achieved an accuracy of 92.7%. This seems to suggest the possibility of practical application in actual construction waste data management work. If object detection techniques or semantic segmentation techniques are utilized based on this study, more precise classification will be possible even within a single image, resulting in more accurate waste classification

A study on the detection of fake news - The Comparison of detection performance according to the use of social engagement networks (그래프 임베딩을 활용한 코로나19 가짜뉴스 탐지 연구 - 사회적 참여 네트워크의 이용 여부에 따른 탐지 성능 비교)

  • Jeong, Iitae;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.197-216
    • /
    • 2022
  • With the development of Internet and mobile technology and the spread of social media, a large amount of information is being generated and distributed online. Some of them are useful information for the public, but others are misleading information. The misleading information, so-called 'fake news', has been causing great harm to our society in recent years. Since the global spread of COVID-19 in 2020, much of fake news has been distributed online. Unlike other fake news, fake news related to COVID-19 can threaten people's health and even their lives. Therefore, intelligent technology that automatically detects and prevents fake news related to COVID-19 is a meaningful research topic to improve social health. Fake news related to COVID-19 has spread rapidly through social media, however, there have been few studies in Korea that proposed intelligent fake news detection using the information about how the fake news spreads through social media. Under this background, we propose a novel model that uses Graph2vec, one of the graph embedding methods, to effectively detect fake news related to COVID-19. The mainstream approaches of fake news detection have focused on news content, i.e., characteristics of the text, but the proposed model in this study can exploit information transmission relationships in social engagement networks when detecting fake news related to COVID-19. Experiments using a real-world data set have shown that our proposed model outperforms traditional models from the perspectives of prediction accuracy.