• Title/Summary/Keyword: 자동산화반응

Search Result 63, Processing Time 0.025 seconds

Physiological Activities of Gymnopilus spectabilis Mycelium Extract and Supernatant of its Broth (갈황색 미치광이버섯 균사체 추출물 및 배양액의 생리활성)

  • Son, Jung-A;Seok, Soon-Ja;Lee, Kyoung-Jin;Lee, Kang-Hyo;Park, Jeong-Sik;Park, Ki-Moon
    • The Korean Journal of Mycology
    • /
    • v.35 no.2
    • /
    • pp.85-95
    • /
    • 2007
  • This study was carried out to investigate the physiological activities of the ethanol extract from Gymnopilus spectabilis mycelium (EGM) and of the supernatant obtained from fermentation broth (SGB). The contents of polysaccharides, phenol compounds and total ${\beta}-glucans$ of EGM were found to be 80.14%, 3.5 mg/ml and 5.91%, respectively and those for SGB were 78.68%, 3.32 mg/ml and 3.28%, respectively. Both EGM and SGB exhibited dose-dependent nitrate-scavenging abilities at pH 1.2. In addition, both EGM and SGB on the autoxidation rate of the linoleic acid demonstrated powerful antioxidant activities at 1 mg/ml level. With respect to fibrolytic activity, EGM showed 1,180 unit/g, which was the same activity as streptokinase, while SGB was 1,011 unit/g. The angiotensin converting enzyme inhibition activity of EMG determined by both the normal and pretreatment methods were estimated to be 8.2% and 10.2%, respectively. However, SGB showed no corresponding activity. The growth inhibitory effects of EGM on AGS, A549, HeLa and NCTC cells were over 58.88%, respectively. And the growth inhibitory effects of the SGB on HeLa and NCTC cells were 44.92 and 76.76%, respectively. Also, EGM and SGB activated the components of the alternative complement pathway from 51 and 62% at the concentration of 100 mg/ml, The xanthine oxidase inhibition activities of EGM and SGB (1 mg/ml) were 9.53 and 16.92%, respectively.

Evaluation of Cryptosporidiurn Disinfection by Ozone and Ultraviolet Irradiation Using Viability and Infectivity Assays (크립토스포리디움의 활성/감염성 판별법을 이용한 오존 및 자외선 소독능 평가)

  • Park Sang-Jung;Cho Min;Yoon Je-Yong;Jun Yong-Sung;Rim Yeon-Taek;Jin Ing-Nyol;Chung Hyen-Mi
    • Journal of Life Science
    • /
    • v.16 no.3 s.76
    • /
    • pp.534-539
    • /
    • 2006
  • In the ozone disinfection unit process of a piston type batch reactor with continuous ozone analysis using a flow injection analysis (FIA) system, the CT values for 1 log inactivation of Cryptosporidium parvum by viability assays of DAPI/PI and excystation were $1.8{\sim}2.2\;mg/L{\cdot}min$ at $25^{\circ}C$ and $9.1mg/L{\cdot}min$ at $5^{\circ}C$, respectively. At the low temperature, ozone requirement rises $4{\sim}5$ times higher in order to achieve the same level of disinfection at room temperature. In a 40 L scale pilot plant with continuous flow and constant 5 minutes retention time, disinfection effects were evaluated using excystation, DAPI/PI, and cell infection method at the same time. About 0.2 log inactivation of Cryptosporidium by DAPI/PI and excystation assay, and 1.2 log inactivation by cell infectivity assay were estimated, respectively, at the CT value of about $8mg/L{\cdot}min$. The difference between DAPI/PI and excystation assay was not significant in evaluating CT values of Cryptosporidium by ozone in both experiment of the piston and the pilot reactors. However, there was significant difference between viability assay based on the intact cell wall structure and function and infectivity assay based on the developing oocysts to sporozoites and merozoites in the pilot study. The stage of development should be more sensitive to ozone oxidation than cell wall intactness of oocysts. The difference of CT values estimated by viability assay between two studies may partly come from underestimation of the residual ozone concentration due to the manual monitoring in the pilot study, or the difference of the reactor scale (50 mL vs 40 L) and types (batch vs continuous). Adequate If value to disinfect 1 and 2 log scale of Cryptosporidium in UV irradiation process was 25 $mWs/cm^2$ and 50 $mWs/cm^2$, respectively, at $25^{\circ}C$ by DAPI/PI. At $5^{\circ}C$, 40 $mWs/cm^2$ was required for disinfecting 1 log Cryptosporidium, and 80 $mWs/cm^2$ for disinfecting 2 log Cryptosporidium. It was thought that about 60% increase of If value requirement to compensate for the $20^{\circ}C$ decrease in temperature was due to the low voltage low output lamp letting weaker UV rays occur at lower temperatures.

Studies on the Browning of Red Ginseng (홍삼(紅蔘)의 갈변(褐變)에 관(關)한 연구(硏究))

  • Kim, Dong-Youn
    • Applied Biological Chemistry
    • /
    • v.16 no.2
    • /
    • pp.60-77
    • /
    • 1973
  • The non-enzymatic browning phenomenons of red ginseng were studied to identify these compounds which function as the factors for browning. The samples were classified into five divisions; Fresh ginseng, blanched ginseng, sun dried red ginseng, dehydrated red ginseng, and browning accelerated red ginseng respectively, and the various compounds in each of them were analyzed quantitatively and investigated the compounds which were thought to function for browning during the drying and the dehydration processes; the results were as follows. 1. The chemical compositions among five divisions did not show any difference except a) total and reducing sugars, b) total acids, c) water soluble extracts; a) and b) were decreased during the drying process, c) was decreased about 6-7% in red ginseng divisions. 2. Sixteen free amino acids; asp., thr., ser., glu., gly., ala., val., cys., met., ileu., leu., tyr., phe., lys., his., and arg, were identified in each division. Among them the arg, was extremly high. All of the essential amino acids were contained, while generally these amino acids were decreased in drying period and their rates were smaller in dehydrated red ginseng than in sun dried red ginseng. 3. Three kinds of sugars; fructose, glucose and sucrose were identified and other four kinds of unidentified sugars were seperated. The content of sucrose was 80% and all kind of sugars were generally less in red ginseng divisions than in the other two divisions. The decreasing rate of sngars was higher in the sun dried red ginseng than in the dehydrated red ginseng. Especially the decreasing rate of the reducing sugars was high as compared with that of sucrose. 4. Almost all the ascorbic acid was decomposed during the blanching whereas there could'nt be shown any change of the ascorbic acid content during the period of drying. 5. Eleven kinds of volatile acids; acetic acid, propionic acid, acrylic acid, iso-butyric acid, n-butyric acid, isovaleric acid, n-valeric acid, isoheptylic acid, n-heptylic acid, and an unknown volatile acid were identified. They showed a little decrease during the period of blanching perhaps on account of their volatility whereas they were increased in drying period. 6. Six kinds of non-volatile acids; citric acid, malic acid, ${\alpha}-ketoglutaric$ acid, succinic acid, pyruvic acid and glutaric acid were identified. The content of them were decreased during the drying procedures in red ginseng but only that of succinic acid was increased. 7. Three kinds of polyphenols; 3-caffeyl quinic acid, 4-caffeyl quinic acid, 5-caffeyl quinic acid and an unknown polyphenol were identified. The content of them showed considerable decrease during the drying procedures, especially in sun drying. 8. The intensity of the browning in each divisior was as follows; browning accelerated red ginseng> sun dried red ginseng> dehydrated red ginseng. 9. In the process of red ginseng preparation, a. certain relationship could be found between the decreasing rates of amino acids, reducing sugars, polyphenols and the intensity of browning. Therefore the browning phenomenon may be concluded that nonenzymatic browning reactions of the amino-carbonyl reaction and autoxidation of polyphenols are the most important processes, furthermore, as their reactions could be controlled it is thought to be possible to accelerate effectively browning within a relatively short period.

  • PDF