DOI QR코드

DOI QR Code

Physiological Activities of Gymnopilus spectabilis Mycelium Extract and Supernatant of its Broth

갈황색 미치광이버섯 균사체 추출물 및 배양액의 생리활성

  • Son, Jung-A (Division of Applied Microbiology, National Institute of Agricultural Science and Technology, RDA) ;
  • Seok, Soon-Ja (Division of Applied Microbiology, National Institute of Agricultural Science and Technology, RDA) ;
  • Lee, Kyoung-Jin (Department of Food Science and Biotechnology, Sungkyunkwan University) ;
  • Lee, Kang-Hyo (Division of Applied Microbiology, National Institute of Agricultural Science and Technology, RDA) ;
  • Park, Jeong-Sik (Division of Applied Microbiology, National Institute of Agricultural Science and Technology, RDA) ;
  • Park, Ki-Moon (Department of Food Science and Biotechnology, Sungkyunkwan University)
  • 손정아 (농업과학기술원 응용미생물과) ;
  • 석순자 (농업과학기술원 응용미생물과) ;
  • 이경진 (성균관대학교 식품생명공학과) ;
  • 이강효 (농업과학기술원 응용미생물과) ;
  • 박정식 (농업과학기술원 응용미생물과) ;
  • 박기문 (성균관대학교 식품생명공학과)
  • Published : 2007.12.31

Abstract

This study was carried out to investigate the physiological activities of the ethanol extract from Gymnopilus spectabilis mycelium (EGM) and of the supernatant obtained from fermentation broth (SGB). The contents of polysaccharides, phenol compounds and total ${\beta}-glucans$ of EGM were found to be 80.14%, 3.5 mg/ml and 5.91%, respectively and those for SGB were 78.68%, 3.32 mg/ml and 3.28%, respectively. Both EGM and SGB exhibited dose-dependent nitrate-scavenging abilities at pH 1.2. In addition, both EGM and SGB on the autoxidation rate of the linoleic acid demonstrated powerful antioxidant activities at 1 mg/ml level. With respect to fibrolytic activity, EGM showed 1,180 unit/g, which was the same activity as streptokinase, while SGB was 1,011 unit/g. The angiotensin converting enzyme inhibition activity of EMG determined by both the normal and pretreatment methods were estimated to be 8.2% and 10.2%, respectively. However, SGB showed no corresponding activity. The growth inhibitory effects of EGM on AGS, A549, HeLa and NCTC cells were over 58.88%, respectively. And the growth inhibitory effects of the SGB on HeLa and NCTC cells were 44.92 and 76.76%, respectively. Also, EGM and SGB activated the components of the alternative complement pathway from 51 and 62% at the concentration of 100 mg/ml, The xanthine oxidase inhibition activities of EGM and SGB (1 mg/ml) were 9.53 and 16.92%, respectively.

독버섯인 갈황색 미치광이버섯의 균사체 추출물(EGM) 및 배양여액 농축물(SGB)의 생리활성을 탐색하였다. 다당류 및 단백질, 페놀화합물, 총 ${\beta}-glucan$ 함량은 EGM의 경우 각각 80.14%, 5.04%, 3.50 mg/ml, 5.95%이었으며, SGB는 78.68%, 4.75%, 3.32 mg/ml, 3.28%로 나타났다. 아질산염 소거능은 pH 1.2에서 EGM의 경우 100 mg/ml 처리 시 64.68%이었다. 환원력의 경우 EGM는 10 mg/ml 처리 시 0.54였으며, SGB는 100 mg/ml의 농도에서 0.87로 가장 높았고 10 mg/ml에서 0.57을 나타내었다. 그리고 linoleic acid의 자동산화 억제 실험에서 EGM의 경우 반응 30시간 이후에는 1 mg/ml 농도에서 합성항산화제인 butyl hydroxy toluene (BHT)나 vitamin E보다 높은 항산화활성을 나타내었다. 암세포 성장억제는 EGM의 경우 10 mg/ml의 농도에서 모든 세포에서 약 59%이상의 억제율을 보였으며, SGB의 경우 자궁암 세포인 HeLa에서 45%의 억제 효과를 나타낸 반면, 정상 간세포주인 NCTC에서도 76.76%의 억제를 나타내었다. 혈전용해 활성에서는 EGM의 경우 Streptokinase의 1,180 unit/g과 동일한 활성을 보였고, SGB는 1,011 unit/g을 나타내었다. ACE 저해활성에서 EGM의 경우 통상법에서는 $8.186{\pm}0.053%$이고, 전처리법에서는 $10.184{\pm}0.223$로 나타났으나, SGB의 경우 ACE 저해활성이 없는 것으로 나타났다. 항보체 활성의 경우 100 mg/ml농도에서 EGM의 경우 51.48%, SGB의 경우 62.65%의 활성도를 보였으며, 10 mg/ml 농도에서는 각각 7.01% 및 17.74%를 나타내었다. 체내 uric acid 생성인자인 xanthine oxidase 저해활성은 1 mg/ml 농도에서 EGM의 경우 9.53%, SGB의 경우 16.92%의 저해효과를 나타내었다.

Keywords

References

  1. Carruthers, J. and Carruthers, A. 2004. Botox: beyond wrinkles, Clinics Dermatol. 22: 89-93 https://doi.org/10.1016/j.clindermatol.2003.11.013
  2. Cheung, H. S. and Cushman, D. W. 1971. Spectrometric assay and properties of angiotensin-converting enzyme of rabbit lung. Biochem. Phamacol. 20: 1637-1641 https://doi.org/10.1016/0006-2952(71)90292-9
  3. Choi, N. D., Seo, S. Y. and Kim, S. H. 1999. Screening of mushrooms having fibrinolytic activity. Kor. J. Food Sci. Technol. 31: 553-557
  4. Chung, K. S., Koo, Y. J., Yoo, J. Y., Choi, S. Y. and Shin, D. H. 1991. Mycelial growth of Ganoderma lucidum and Grifola frondosa in Milk Whey. Kor. J. Mycol. 19: 61-65
  5. Chung, K. S., Toon, K. D., Kwon, D. J., Hong, S. S. and Choi, S. Y. 1997. Cytotoxicity testing of fermented soybean products with various tumour cells using MTT Assay. Kor. J. Appl. Microbiol. Biotechnol. 22: 477-482
  6. Dennert, G. and Tucker, D. 1973. Antitumor polysaccharide lentinan a T cell adjuvant. J. Natl. Cancer Inst. 51: 1727-1735 https://doi.org/10.1093/jnci/51.5.1727
  7. Dnizot, F. D. and Rita, L. 1986. Rapid colorimetric assay for cell growth and survival: Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods 22: 271-277
  8. Halliwell, B. 1974. Superoxide dismutase, catalase and gluthathione peroxidase: solution to the problems of living with oxygen. New Phytol. 73: 1075-1080 https://doi.org/10.1111/j.1469-8137.1974.tb02137.x
  9. Hamazaki, Y, Kuramoto, M., Okamura, K., Yajima, A. and Suzuki, M. 1980. Immunotherapy of uterine cervical cancer by administration of chizophyllan (SPG). Int. J. Immunopharmacol. 2: 173-181
  10. Haverkate, F. and Traas, D. W. 1974. Dose-response curves in the fibrin plate assay. Fibrinolytric activity of protease. Thromb. Haemost. 32: 356-360 https://doi.org/10.1055/s-0038-1647705
  11. Herbert, D., Phipps, P. J. and Strange, R. E. 1971. Chemical analysis of microbial cells. Methods Microbiol. 58: 265-430
  12. Hong, J. H., Youn, K. S. and Choi, Y. H. 2004. Characteristics of crude protein-bound polysaccharide from Agricus blasei Murill by extraction and precipitation conditions and its antitumor effect. Kor. J. Food Sci. Technol. 36: 586-593
  13. Ito, H. 1986. Effects of the antitumor agents from various natural sources on drug-metabolizing system, phagocytic activity and complement system in sarcoma 180-bearing mice. Jpn. J. Pharmacol. 40: 435-443 https://doi.org/10.1254/jjp.40.435
  14. Jung, Y. S. 2002. The Research on physiological activities of the Salicornia herbacea extract and the possibility of application as new cosmetic materials. Master's Thesis. Kyungsan University, Kyungsan, Korea
  15. Kabat, E. E. and Mayer, M. M. 1964. Experimental immunochemistry. Thomas Publisher, Illinois. Pp 133-240
  16. Kang, Y. H., Park, Y. K. and Lee, G. D. 1996. The nitrite scavenging and electron donating ability of phenolic compounds. Kor. J. Food Sci. Technol. 28: 232-239
  17. Kishida, E., Yoshiaki, S. and Akira, M. 1989. Purification of an antitumor-active, branched (1 ${\rightarrow}$3)-${\beta}$-glucan from Volvariella volvacea, and elucidation of its fine structure. Carbohydrate Res. 193: 227-239 https://doi.org/10.1016/0008-6215(89)85121-3
  18. Lee, G. D., Chang, H. G. and Kim, H. K. 1997. Antioxidative and nitrite-scavenging activities of edible mushrooms. Kor. J. Food Sci. Technol. 29: 432-436
  19. Lee, W. C., Yen, W. J., Huang, S. C. and Duh, P. D. 2002. Antioxidant activity of sesame coat. Food Chem. 78: 347-354 https://doi.org/10.1016/S0308-8146(02)00119-X
  20. Lehninger, A. L. 1998. Principles of biochemistry. Worth publishers INC. New York. p 634
  21. Marklund, S. and Marlund, G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47: 496-474
  22. Mizuno, T. 1999. The extraction and development of antitumoractive polysacchaides from medicinal mushrooms in Japan (review). Int. J. Med. Mushrooms. 1: 9-19 https://doi.org/10.1615/IntJMedMushrooms.v1.i1.20
  23. Mizuno, T., Ohsawa, K., Hagiware, N. and Kuboyama, R. 1986. Fractionation and characterization of antitumor polysaccharides from Maitake, Grifola frondosa. Agric. Biol. Chem. 50: 1679-1688 https://doi.org/10.1271/bbb1961.50.1679
  24. Moradali, M. F., Mostafavi, H., Ghods, S. and Hedjaroude, G. A. 2007. Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrogungi). Int. Immunopharmacol. in press
  25. Nohl, H. and Jordan, W. 1986. The mitochondrial site of superoxide formation. Biochem. Res. Commun. 138: 533-539 https://doi.org/10.1016/S0006-291X(86)80529-0
  26. Noro, T., Oda, Y, Miyase, T., Ueno, A. and Fukushima, S. 1983. Inhibitors of xanthine oxidase from the flowers and buds of Daphne genkwa. Chem. Pharm. Bull. 31: 3984 https://doi.org/10.1248/cpb.31.3984
  27. Odenthal, K. P., Seeger, R., Braatz, R., Petzinger, E., Moshaf, H. and Schmitz-Deger, C. 1982. Damage in vitro to various organs and tissues by rubescenslysin from the edible mushroom Amanita rubescens. Toxicon 20: 765-781 https://doi.org/10.1016/0041-0101(82)90124-6
  28. Okamura, J., Mimura, A., Yakou, Y., Niwano, M. and Takahara, Y. 1993. Antioxidant activity of tannins and flavonnoids in Eucalyptus rostrata. Phytochemistry 3: 557-561
  29. Ooi, V. E. C. and Liu, F. 1999. A review of pharmacological activities of mushroom polysaccharides. Int. J. Med. Mushrooms. 1: 195-206 https://doi.org/10.1615/IntJMedMushrooms.v1.i3.10
  30. Oyaizu, M. 1986. Studies on products of browning reaction: antioxidative activity of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 44: 307-315 https://doi.org/10.5264/eiyogakuzashi.44.307
  31. Park, J. G., Hyun, J. W., Lim, K. H., Shin, J. E., Won, Y. J., Yi, Y. D., Shin, K. H., Chang, I. M. and Woo, W. S. 1993. Antineoplastic effects from traditional medicinal plants. Kor. J. Pharmacogn. 24: 223-230
  32. Park, K. M. and Lee, B. W. 1998. Extraction and purification of antitumor protein-bound polysaccharides from mycelia of Lentinus edodes. Kor. J. Food Sci. Technol. 30: 1236-1242
  33. Peter, F. S. 1975. The toxicology of nitrate, nitrite and N-nitroso compounds. J. Sci. Food Agric. 26: 1761
  34. Slinkard, K. and Singleton, V. L. 1974. Total phenol analysis: automation and comparison with manual method. Am. J. Ecol. Vitic. 28: 49-56
  35. STATISTIX. 1996. STATISTIX for windows. User's manual. Analytical software. USA
  36. Stephen, J. S., Wan, Y., Snapinn, S. M., DiBattiste, P. M., Zhao, X. Q., Theroux, P., Jang, I. K. and Januzzi, J. L. 2004. Tirofiban therapy for patients with acute coronary syndromes and prior coronary artery bypass grafting in the PRISM-PLUS trial. Am. J. Cardiol. 93: 843-847 https://doi.org/10.1016/j.amjcard.2003.12.021
  37. Wayne, H., MacDonald, C. and Currow, D. 2005. Cannabinoids and cancer: causation, remediation, and palliation. Lancet Oncol. 6: 35-42 https://doi.org/10.1016/S1470-2045(04)01711-5
  38. Yeun, D. M., Lee, T. G, Byun, H. S., Kim, S. B. and Park, Y. H. 1992. Angiotensin-I converting enzyme inhibitory activity of enzymatic hydrolysates of mackerel muscle protein. Bull. Kor. Fish. Soc. 23: 229-235
  39. Zhang, M., Cui, S. W., Cheung, P. C. K. and Wang, Q. 2007. Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Trends Food Sci. Technol. 18: 4-19 https://doi.org/10.1016/j.tifs.2006.07.013
  40. Zhijian, H., Haugland, R. P., You, W. and Haugland, R. P. 1992. Phallotoxin and actin binding assay by fluorescence enhancement. Anal. Biochem. 200: 199-204 https://doi.org/10.1016/0003-2697(92)90299-M