DOI QR코드

DOI QR Code

Screening of GLA (γ-Linolenic Acid) from Fungi by Gas Chromatography and Mass Spectroscopy

Gas Chromatograph-Mass Spectrometer를 이용한 γ-Linolenic Acid(GLA) 생성 균주탐색 및 확인

  • Kim, Jung-Bong (National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Kim, Kyung-Hwan (National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Hong, Seung-Beom (National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Park, Jong-Sug (National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Lee, Jong-Yeoul (National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Kim, Sam-Sun (National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Bae, Shin-Chul (National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Cho, Kang-Jin (National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Lee, Dong-Jin (College of Bio-resources Science, Dankook University)
  • 김정봉 (농촌진흥청 농업생명공학연구원) ;
  • 김경환 (농촌진흥청 농업생명공학연구원) ;
  • 홍승범 (농촌진흥청 농업생명공학연구원) ;
  • 박종석 (농촌진흥청 농업생명공학연구원) ;
  • 이종렬 (농촌진흥청 농업생명공학연구원) ;
  • 김삼선 (농촌진흥청 농업생명공학연구원) ;
  • 배신철 (농촌진흥청 농업생명공학연구원) ;
  • 조강진 (농촌진흥청 농업생명공학연구원) ;
  • 이동진 (단국대학교 식량자원학과)
  • Published : 2007.12.31

Abstract

In order to select ${\gamma}-Linolenic$ acid (GLA)-producing fungi, a total of forty-four strains of 4 genera such as Phytophthora, Pythium, Mucor and Rhizopus were obtained from Koran Agricultural Culture Collection (KACC) and then analysed by using GC-FID and GC-MS. GLA was detected on 39 fungal strains, and the highest rate of GLA was found as 24.8% of total fatty acids on Mucor hiemalis f. sp. hiemalis KACC 40264. Total GLA content of Zygomycota was comparatively high - Mucor (14.2%) and Rhizopus (14.3%), whereas that of Oomycetes was low - Phytophthora (3.3%) and Pythium (3.0%). Moreover, total fatty acids of the Zygomycota fungi such as Mucor (15.4 mg/100 ml) and Rhizopus (7.1 mg/100 ml) were higher compared with the Oomycetes such as Phytophthora (2.6 mg/100 ml) and Pythium (4.5 mg/100 ml). Thus, two genera such as Mucor and Rhizopus have higher potential as an useful microbial resource. The total fatty acid content varies even within the strains of the same genus e.g. Mucor. M. blumbeus KACC 40935 showed the highest values on productivity (18.2%) of GLA and total fatty acid contents (50.8 mg/100 ml liquid medium).

가스크로마토그라프와 질량분석기 (GC-MS)를 이용하여 감마리놀렌산(GLA) 생산 균주를 선발하였다. KACC에 보존 중인 Phytophthora 속, Pythium 속 및 Mucor 속 및 Rhizopus 속 등 4속에 속하는 44개 균주를 GC-FID를 통하여 GLA를 분석하였다. 4속 39종의 곰팡이 균주에서 GLA를 확인하였으며, M. hiemalis f. sp. hiemalis KACC 40264 균주에서는 GLA의 조성비가 전체 지방산의 24.8%로서 가장 높은 비율을 나타냈다. 속간에 전체적인 GLA 함량은 Mucor 속(14.2%)과 Rhizopus 속(14.3%)의 Zygomycota가 상대적으로 높은 함량을, 그리고 Phytophthora 속(3.3%)과 Pythium 속(3.0%)의 Oomycota는 낮은 함량을 나타냄으로서 뚜렷한 양분현상을 나타냈다. 지방산총량에서도 Mucor 속(15.4 mg/100 ml)과 Rhizopus 속(7.1 mg/100 ml)가 Phytophthora 속(2.6 mg/100 ml)와 Pythium 속(4.5 mg/100 ml)보다 높게 나타나서 전체적으로 지방산을 생산하는 유용한 균류자원으로 평가되었다. Mucor 속 내에서도 계통별로 큰 차이를 나타냈는데 18.2%의 GLA를 생성함으로 지방산총량이 50.8 mg/100 ml까지 이른 Mucor blumbeus KACC 40935가 실제적으로 가장 활력이 좋은 균주로 평가되었다.

Keywords

References

  1. Bayley, J. M., King, J. and Gamborg, O. L. 1972. The effect of the source of inorganic nitrogen on growth and enzymes of nitrogen assimilation in soybean and wheat cells in suspension cultures. Planta 105: 15-20 https://doi.org/10.1007/BF00385159
  2. Certik, M., Balteszova, L. and Sajbidor, J. 1977. Lipid formation and gamma-linolenic acid production by Mucorales fungi grown on sunflower oil. Lett. Appl. Microbiol. 25: 101-105 https://doi.org/10.1046/j.1472-765X.1997.00173.x
  3. Elena, C., Miroslav, S., Silvia, S. and Flavio, Z. 2001. ${\gamma}$-linolenic acid production by solid-state fermentation of Mucorales strains on cereals. Biores. Tech. 76: 283-286 https://doi.org/10.1016/S0960-8524(00)00097-3
  4. Hinman, J. W. 1972. Prostagrandins. Annu. Rev. Biochem. 41: 161-178 https://doi.org/10.1146/annurev.bi.41.070172.001113
  5. Hiruta, O., Kamisaka, Y., Yokochi, T., Futamura, T., Takebe, H. and Satoh, A. et al. 1996. Gamma-linoleic acid production by a low temperature-resistant mutant of Mortierella ramanniana. J. Fermen. Bioeng. 82: 119-123 https://doi.org/10.1016/0922-338X(96)85032-X
  6. Jessup, W. and Fowler, M. W. 1976. Interrelationship between carbohydrate metabolism and nitrogen assimilation in cultured plant cells. I. Effect of glutamate and nitrate as alternative nitrogen sources on cell growth. Planta 132: 119-125 https://doi.org/10.1007/BF00388892
  7. Kennedy, M. J., Reader, S. L. and Davies, R. J. 1993. Fatty acid production characteristics of fungi with particular emphasis in gamma-linolenic acid production. Biotech. Bioeng. 42: 625-634 https://doi.org/10.1002/bit.260420511
  8. Kim, J. B., Kim, K. H., Hwang, S. K., Kim, Y. H., Cho, K. J., Hwang, Y. S. and Park, R. D. 2001. The Composition of useful medium chain fatty acid in eight plant species. J Kor. Soc. Agric. Chem. Biotechnol. 44: 20-23
  9. Kim, J. B., Kim, Y. H., Lee, C. H., Hwang, Y. S. and Park, R. D. 1995. Screening of ${\gamma}$-linolenic acid resources and fatty acid composition in Korean native medicinal plants. Kor. J. Med. Crop. Science 3: 107-110
  10. Kim, Y. H. and Janick, J. 1991. Abscisic acid and proline improve desiccation tolerance and increase fatty acid content of celery somatic embryos. Plant Cell Tissue Organ Culture 24: 83-89 https://doi.org/10.1007/BF00039735
  11. Metcalfe, L. D., Schmitz, A. A. and Pelka, J. R. 1966. Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Anal. Chem. 38: 514-515 https://doi.org/10.1021/ac60235a044
  12. Owen, P. W. and Ajay, S. 2005. Omega-3/6 fatty acids: Alternative sources of production. Process Biochem. 40: 3627-3652 https://doi.org/10.1016/j.procbio.2005.02.020
  13. Ronald, S. P. 2006. Nutritional intervention with omega-3 fatty acids enhances tumor response to anti-neoplastic agents. Chem. Biol. Interact. 162: 89-105 https://doi.org/10.1016/j.cbi.2006.05.012
  14. Saskia, T. and Walter, V. 2005. A gas chromatography/electron ionization-mass spectrometry-selected ion monitoring method for determining the fatty acid pattern in food after formation of fatty acid methyl esters. J. Agric. Food Chem. 53: 8896-8903 https://doi.org/10.1021/jf051468u
  15. Tan, C. K. and Johns, M. R. 1991. Fatty acid production by heterotrophic Chlorolla sacchanophilas. Hydrobiologia 215: 13-19 https://doi.org/10.1007/BF00005896
  16. Whipkey, A., Simon, J. E. and Janick, J. 1998. In vivo and in vitro lipid accumulation in Borago officinalis L. J. Am. Oil Chem. Soc. 65: 979-984 https://doi.org/10.1007/BF02544524
  17. Wolf, R. B., Kleiman, R. and England, R. E. 1983. New sources of ${\gamma}$-linolenic acid. J. Am. Oil Chem. Soc. 60:1858-1860 https://doi.org/10.1007/BF02901538
  18. Xian, M., Nie, J., Meng, Q., Liu, J., Zhou, C., Kang, Y. et al. 2003. Production of gamma-linolenic acid by disrupted mycelia of Mortierella isabellina. Lett. Appl. Microbial. 36: 182-185 https://doi.org/10.1046/j.1472-765X.2003.01291.x

Cited by

  1. Variation of Fatty Acid Composition and Content in Domestic and Imported Solar-Salt by GC-MS vol.30, pp.4, 2011, https://doi.org/10.5338/KJEA.2011.30.4.419
  2. Changes in Fatty Acid Composition of Grain after Milling vol.30, pp.4, 2011, https://doi.org/10.5338/KJEA.2011.30.4.409
  3. The morphological characteristics and fatty acids composition of pollens in acorn and darae(Actinidia arguta) vol.51, pp.2, 2013, https://doi.org/10.7852/jses.2013.51.2.119