• Title/Summary/Keyword: 자동돌발상황검지

Search Result 8, Processing Time 0.019 seconds

Development of An Automatic Incident Detection Model Using Wilcoxon Rank Sum Test (Wilcoxon Rank Sum Test 기법을 이용한 자동돌발상황검지 모형 개발)

  • 이상민;이승환
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.6
    • /
    • pp.81-98
    • /
    • 2002
  • 본 연구는 Wilcoxon Rank Sum Test 기법을 이용한 자동 돌발상황 검지 모형을 개발하는 것이다. 본 연구의 수행을 위하여 고속도로에 설치된 루프 차량 검지기(Loop Vehicle Detection System)에서 수집된 점유율 데이터를 사용하였다. 기존의 검지모형은 산정하기가 까다로운 임계치에 의하여 돌발상황을 검지하는 방식이었다. 반면 본 연구 모델은 위치와 시간대 교통 패턴에 관계없이 모형을 일정하게 적용하며, 지속적으로 돌발상황 지점과 상·하류의 교통패턴을 비교 검정 기법인 Wilcoxon Rank Sum Test 기법을 사용하여 돌발상황 검지를 수행하도록 하였다. 연구모형의 검증을 위한 테스트 결과 시간과 위치에 관계없이 정확하고 빠른 검지시간(돌발 상황 발생 후 2∼3분)을 가짐을 알 수 있었다. 또한 기존의 모형인 APID, DES, DELOS모형과 비교검증을 위하여 검지율 및 오보율 테스트를 수행한 결과 향상된 검지 능력(검지율 : 89.01%, 오보율 : 0.97%)을 나타남을 알 수 있었다. 그러나 압축파와 같은 유사 돌발상황이 발생되면 제대로 검지를 하지 못하는 단점을 가지고 있으며 향후 이에 대한 연구가 추가된다면 더욱 신뢰성 있는 검지모형으로 발전할 것이다.

Development of Incident Detection Model Using Compression Wave Test Module (압축파 검사 모듈을 이용한 돌발상황 검지 모형의 개발)

  • Lee, Hwan-Pil;Kim, Nam-Sun;Oh, Young-Tae;Kim, Soo-Hee
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.6
    • /
    • pp.77-88
    • /
    • 2004
  • This study aims at developing the model that is able to detect the compression wave, which is included as a similar situation in incidents, that causes false applicable to the similar character such as incidents in the incident detection model for expressways. In this study, it has been checked whether the number of false alarms is decreased or not by modularizing this model for being able to applicable to other models such as DES and DELOS, etc. which do not perform the compression wave test based on the compression wave test process of APID model which has been being used in the expressway traffic management system currently. The evaluation in this study focuses on the sensitivity of the model and the results analysis is performed classified by each polling cycle. And how well these models are working is evaluated by each polling cycle. In addition to this, the detection rate, the false alarm rate and the average detection time in both the existing models and the model in this study are calcuated. As a result of appling the model in this study, it is found that the false alarm rate is improved through the reasonable decrease in the number of false alarm frequencies and there are not remarkable changes concerning the detection rate and the average detection time. To sum up, it is expected that a good number of improvement effects will be occurred when this model is applied to the actual expressway traffic management system.

Development and Evaluation of Automatic Incident Detection Algorithm using Modified Flow-Occupancy Diagram (수정교통량-점유율 관계도를 이용한 돌발상황 자동검지알고리즘 개발 및 평가)

  • Kim, Sang-Gu;Kim, Young-Chun
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.4
    • /
    • pp.229-239
    • /
    • 2008
  • Most algorithms for detecting incidents have been developed under the premise that congestion must happen whenever an incident occurs. For that reason, the performance of these algorithms could not be guaranteed in cases where congestion did not happen due to traffic operations with low flows despite the occurrence of an incident. The objective of this paper is to develop an automatic incident detection algorithm using a new diagram that can reliably detect the incident under various conditions of traffic operations including a low volume state. Compared with the McMaster Algorithm, the proposed algorithm in this paper was evaluated with three different cases in which the incidents occur in traffic operations with a low volume state, a relatively high volume state, and a recurrent congestion state. It is shown that the new algorithm has a capability to identify the flow characteristics of incidents for all the three cases and is much better than McMaster algorithm in terms of detection rate and false alarm rate.

Development of an AIDA(Automatic Incident Detection Algorithm) for Uninterrupted Flow Based on the Concept of Short-term Displaced Flow (연속류도로 단기 적체 교통량 개념 기반 돌발상황 자동감지 알고리즘 개발)

  • Lee, Kyu-Soon;Shin, Chi-Hyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.2
    • /
    • pp.13-23
    • /
    • 2016
  • Many traffic centers are highly hesitant in employing existing Automatic Incident Detection Algorithms due to high false alarm rate, low detection rate, and enormous effort taken in maintaining algorithm parameters, together with complex algorithm structure and filtering/smoothing process. Concerns grow over the situation particularly in Freeway Incident Management Area This study proposes a new algorithm and introduces a novel concept, the Displaced Flow Index (DiFI) which is similar to a product of relative speed and relative occupancy for every execution period. The algorithm structure is very simple, also easy to understand with minimum parameters, and could use raw data without any additional pre-processing. To evaluate the performance of the DiFI algorithm, validation test on the algorithm has been conducted using detector data taken from Naebu Expressway in Seoul and following transferability tests with Gyeongbu Expressway detector data. Performance test has utilized many indices such as DR, FAR, MTTD (Mean Time To Detect), CR (Classification Rate), CI (Composite Index) and PI (Performance Index). It was found that the DR is up to 100%, the MTTD is a little over 1.0 minutes, and the FAR is as low as 2.99%. This newly designed algorithm seems promising and outperformed SAO and most popular AIDAs such as APID and DELOS, and showed the best performance in every category.

Development of Automatic Accidents Detection Algorithm Using Image Sequence (영상을 이용한 자동 유고 검지 알고리즘 개발)

  • Lee, Bong-Keun;Lim, Joong-Seon;Han, Min-Hong
    • The KIPS Transactions:PartB
    • /
    • v.10B no.2
    • /
    • pp.127-134
    • /
    • 2003
  • This paper is intended to develop an algorithm for automatic detection of traffic accidents using image sequences. This algorithm is designed for detecting stopped vehicles traffic accidents, break down, illegal stop in the road shoulder - on the range of camera view. Virtual traps are set on accident-prone spots. We analyze the changes in gray levels of pixels on the virtual traps which represent the motion of vehicles on the corresponding spots. We verify the proposed algorithm by simulating some situations and checking if it detect them correctly.

Highway Incident Detection and Classification Algorithms using Multi-Channel CCTV (다채널 CCTV를 이용한 고속도로 돌발상황 검지 및 분류 알고리즘)

  • Jang, Hyeok;Hwang, Tae-Hyun;Yang, Hun-Jun;Jeong, Dong-Seok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.23-29
    • /
    • 2014
  • The advanced traffic management system of intelligent transport systems automates the related traffic tasks such as vehicle speed, traffic volume and traffic incidents through the improved infrastructures like high definition cameras, high-performance radar sensors. For the safety of road users, especially, the automated incident detection and secondary accident prevention system is required. Normally, CCTV based image object detection and radar based object detection is used in this system. In this paper, we proposed the algorithm for real time highway incident detection system using multi surveillance cameras to mosaic video and track accurately the moving object that taken from different angles by background modeling. We confirmed through experiments that the video detection can supplement the short-range shaded area and the long-range detection limit of radar. In addition, the video detection has better classification features in daytime detection excluding the bad weather condition.

Development of an AIDA(Automatic Incident Detection Algorithm) for Uninterrupted Flow By Diminishing the Random Noise Effect of Traffic Detector Variables (검측 변수내 Random Noise 제거를 통한 연속류 돌발상황 자동감지알고리즘 개발)

  • Choi, Jong-Tae;Shin, Chi-Hyun;Kang, Seung-Min
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.2
    • /
    • pp.29-38
    • /
    • 2012
  • The data quality and measurements along consecutive detector stations can vary much even in the same traffic conditions due to variety in detector types, calibration and maintenance effort, field operation periods, minor geometric changes of roads and so on. These faulty situations often create 10% or more of inherent difference in important traffic measurements between two stations even under stable low flow condition. Low detection rates(DR) and high false alarm rates(FAR) therefore sets in among many popular Automatic Incident Detection Algorithms(AIDA). This research is two-folded and aims mainly to develop a new AIDA for uninterrupted flow. For this purpose, a technique which utilizes a Simple Arithmetic Operation(SAO) of traffic variables is introduced. This SAO technique is designed to address the inherent discrepancy of detector data observed successive stations, and to overcome the degradation of AIDA performance. It was found that this new algorithm improves DR as much as 95 percent and above. And mean time to detection(MTTD) is found to be 1 minutes or less. When it comes to FAR, this new approach compared to existing AIDAs reduces FAR up to 31.0 percent. And capability in persistency check of on-going incidents was found excellent as well.

A Study on the Traffic Information System Development Using DSRC (DSRC를 이용한 교통정보시스템 개발 연구)

  • Kwon, Han-Joon;Lee, Jae-Jun;Lee, Seung-Hwan;Lee, Jin-Kweon;Kim, Yong-Deak
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.13-22
    • /
    • 2009
  • Recently, DSRC technology is used in the various fields such as parking system, BIS, ETC, etc. This paper suggests a traffic information system using this DSRC technology. The traffic information processing based on point detection using existing vehicle detection equipment is the system in which a collection and a service are operated separately while the traffic information system based on the link detection using DSRC is able to collect and provide the traffic information through the communication between RSE and OBU. The speed of a traffic congestion is high on the process converted from a point passing speed to a link average speed because the vehicle detection equipment makes the link traffic information into the point information. When the condition of traffic is deteriorated, traffic speed of the vehicle detection equipment becomes higher than DSRC. Especially, in this system, deflection by data of the traffic speed of the traffic information system is much decreased, and the unexpected condition detection and traffic condition are provided promptly.

  • PDF