이 논문에서는 비선형 자기회귀 과정을 따르는 오차항을 포함한 회귀모형에서 계수추정법의 비교를 다룬다. 비교를 위해 통상적 최소제곱추정량, 일반화 최소제곱추정량, 모수적 회귀오차 수정법, 비모수적 회귀오차 추정법을 비교하였다. 본 논문에서는 또한 비선형 자기회귀모형의 성질을 전형적인 몇가지 비선형자기회귀 모형을 예를 들어 설명한다. 비교연구의 결과 네 가지 추정량 중에 모든 상황에서 최선인 추정량은 존재하지 않았으나 비모수 회귀오차 수정 방법이 일반적으로 우수한 성능을 보임을 알 수 있다.
증권의 가격형성에 유리한 뉴스와 불리한 뉴스가 도착할 때 이 뉴스가 주가의 변동성에 미치는 영향의 정도는 차이가 있다. 불리한 뉴스가 변동성에 미치는 영향도가 유리한 뉴스가 변동성에 미치는 영향도보다 크다. 따라서 불리한 뉴스가 발생할 때 형성되는 변동성의 양이 유리한 뉴스의 도착시보다 크다. 그리고 충격의 크기에 따라 이 충격이 야기하는 변동성의 양의 크기에도 차이가 존재한다. 일반 자기회귀 조건부 이분산 과정은 유리한 뉴스와 불리한 뉴스를 대칭적으로 반영하고 있다. 이 뉴스들을 비대칭적으로 포착하는 자기회귀 조건부 이분산 과정의 모형들을 실증적으로 분석하였다. 뉴스의 비대칭성과 규모를 적절히 포착하고 있는 모형들이 비선형 일반 자기회귀 조건부 이분산 과정, 지수 일반 자기회귀 조건부 이분산 과정과 정보 포착 자기회귀 조건부 이분간 과정임이 발견되었다. 이 중 비선형 일반 자기회귀 조건부 이분산 과정이 가장 좋은 모형으로 보인다. 비선형 일반 자기회귀 조건부 이분산 과정의 경우 예측오차의 승멱(power)이 약 1.5이다. 따라서 일반 자기회귀 조건부 이분산 과정의 예측오차의 승멱인 2에 비하여 작다. 이 사실은 일반 자기회귀 조건부 이분산의 예측오차의 승멱이 과도하게 측정되고 없음을 알 수 있다. 뉴스의 비대칭성과 규모를 반영하고 있는 모형들은 한결같이 예측오차의 크기에 적절한 가중치를 부여하여 예측오차의 크기를 조정하고 있다. 이 모형의 성질과 실증분석의 결과에 의하여 예측오차의 승멱은 2 이하로 수정하여 사용해야 한다는 점이 시사되고 있다. 음의 충격이 양의 충격보다 주가의 변동성을 크게 하고 없음이 발견되었다. 주가형성에 유리한 뉴스와 불리한 뉴스가 주가의 변동성에 미치는 영향의 차이와 충격의 중대성을 양으로 표시하는 규모의 차이를 반영해주는 변수들의 추정된 계수가 미국과 일본보다 절대값에 있어서 상당히 작다. 이 현상은 뉴스의 비대칭성과 규모보다는 발생하는 충격, 즉 뉴스 자체에 보다 민감하게 반응하고 있음을 보여주고 있다. 물론 투자자들이 뉴스의 비대칭성과 규모를 완전히 무시하고 투자활동을 전개하고 있다는 것을 의미하는 것은 아니다.
일반적으로 오차항이 자기상관되어 있는 선형회귀 모형에서는 회귀계수에 대한 보통최소제곱추정량이 효율적이지 못 하다고 알려져 있다. 그러나 이러한 일반화선형회귀모형에서 독립변수의 형태에 따라서는 OLSE의 사용 가능성을 제시하는 모형이 있다. 본 연구에서는 오차항이 일차 이동평균 과정을 따르는 선형회귀모형에서 여러 추정량들 (GLSE, APX, MAPX)에 대한 OLSE의 상대효율함수를 유도하고 비교 분석하고자 한다. 특히 소표본에서 정확한 상대효율값을 구하여 OLSE의 효율성이 크게 떨어지지 않거나 효율성이 나은 회귀모형들을 제시한다.
본 연구에서는 잔차를 이용하여 오차항의 코플라 함수를 추정하는 문제를 고려하였다. 확률적 회귀모형을 개별모형으로 갖는 경우, 오차항 대신 잔차들의 경험적 분포함수를 이용하여 구한 코플라 모수에 대한 준모수적 추정량의 성질을 살펴보았으며, 이 추정량이 일치추정량이 되기 위한 조건을 구하였다. 응용사례로 코플라-자기회귀이동평균 모형을 다루었으며, 모의실험을 통해 자기회귀 근사를 통해 얻은 잔차를 이용하여 계산한 추정량의 성질도 살펴보았다.
본 논문에서는 약품비 지출에 대한 예측을 수행하기 위하여 시계열 모형을 도입한다. 2012년 약가 일괄인하를 반영하기 위하여 구간별 모형을 토대로, 자기회귀오차모형과 전이함수모형을 고려하였다. 자기회귀오차모형에서는 예측의 편리성을 위하여 결정적 추세만을 고려하였으며, 전이함수모형에서는 주요한 외생변수와의 교차상관성을 이용하여 약품비 지출의 인과 메커니즘을 설명하였다. 각 모형에서 약가 일괄인하 이후 수준 변화가 유의하게 나타났으며, 전이함수모형에서는 의약품 사용자 수 및 노인환자 비중 시계열 변수가 유의하게 나타났다. 자기회귀오차모형은 약가 일괄인하로 의한 약품비 수준이동에 좌우되어 비교적 낮은 예측값이 도출되었으며, 전이함수모형은 약품비 지출에 영향을 미치는 외부 설명변수의 증가 추세가 적절히 반영되어 더 높은 예측값을 보였다. 설명변수를 포함하지 않을 경우, 약품비 수준이동만을 고려한 ARIMA 모형은 약품비 지출 추세를 가장 높이 예측하였다.
Journal of the Korean Data and Information Science Society
/
제20권2호
/
pp.293-299
/
2009
이 논문에서는 대구 두 개 동의 시간별 오존농도를 예측하는 모형으로 회귀, 자기회귀누적이동평균, 자기회귀누적이동평균 오차를 가지는 회귀 같은 선형모형들을 고려하였다. 평균제곱오차제곱근에 근거하여 보았을 때 한 개 동에서는 자기회귀누적이동평균 모형이 최적의 모형으로 선택되었고, 다른 동에서는 자기회귀누적이동평균 오차를 가지는 회귀 모형이 최적 모형으로 선택되었다. 이 최적의 모형으로부터 나온 잔차들의 변동석 분석을 수행하였는데 이를 통해 120 ppb를 넘는 오존 주의보 날짜를 예측하였다. 2000년에서 2003년까지의 훈련용 자료에 근거하여 보았을 때 잔차값의 경계값으로 35 ppb를 잡았을 때 오존주의보 날짜를 예측하는데 좋은 결과를 보였다. 하나의 동에서는 2004년의 오존주의보가 발령된 이틀 중 하루와 나머지 주의보가 발령되지 않은 364일을 모두 정확히 예측하였다. 다른 동에서는 2004년의 오존주의보가 발령된 하루와 주의보가 발령되지 않은 365일을 모두 정확히 예측하였다.
본 연구에서는 농업용 저수지에서 저수량 예측모형과 함께 저수지의 목표저수량 및 한계저수량을 유지하기 위한 저수지 운영방안을 제시하였다. 대상저수지인 금강저수지에서 1990년부터 200l년까지의 저수량 자료를 이용하여 갈수빈도해석을 적용하고, 2년빈도 한발저수량을 목표저수량(target storage)으로, 10년빈도 한발저수량을 한계저수량(critical storage)으로 설정하였다. 농업용 저수지의 운영의 효율화를 위해서는 우선 합리적인 방법을 통하여 장래 저수량을 예측하여야 한다. 예측된 저수량은 저수지 운영에 관한 계획을 수립하는데 기초자료로 활용될 수 있다. 본 연구에는 저수량 예측모형으로 ARIMA 모형과 자기회귀오차모형을 적용하였다. ARIMA 모형은 과거 저수량 자료만을 근거로 하여 저수량을 예측함으로서 예측정도가 상대적으로 낮은 것으로 나타난 반면, 자기회귀오차모형은 저수량과 관련 있는 설명변수들을 이용함으로써 예측의 효과를 높일 수 있었다. 농업용 저수지의 저수량은 이전 저수량, 강수량, 평균온도, 최고온도, 관개면적, 풍속, 습도의 영향을 받으므로 자기회귀오차모형을 적용하여 저수량과 저수량에 영향을 미치는 요인과의 관계를 분석하였다. 자기회귀오차모형에 의한 저수량 예측 관계식은 저수지의 연속방정식과 유사한 관계식으로 유도되어 실제 적용성이 높을 것으로 판단되며, 금광저수지에서 예측된 2002년도 저수량과 관측된 저수량을 비교한 결과, 양호한 예측결과를 보여 주었다.
수자원이 우리 생활의 전반적으로 중요한 역할을 차지하면서 댐의 효율적인 운영과 안정적인 용수공급에 대한 연구는 지속적으로 수행되어지고 있다. 1990년대 이후 비선형적인 특성을 잘 모의하는 장점을 가진 인공신경망(ANN)을 이용하여 유입량 예측에 대한 많은 연구가 수행되었다. 하지만 ANN 모형을 포함한 회귀모형은 월 강우 및 유입량의 예측에 대해 간편하게 사용을 할 수 있지만, 예측의 정확성에 한계를 가지고 있다. 본 연구에서는 ANN 모형과 회귀모형의 예측오차를 후처리 과정을 통하여 오차를 줄임으로써 예측모형의 성과를 향상시키는 방법을 제안하였다. 연구지역은 금강수계의 대청댐 유역으로, 1982년 9월부터 2005년 12월에 해당하는 유역 내 11개 지점의 강우관측소에서 관측한 월 강우와 댐 유입량을 수집하여 모형을 구축하였다. 강우량과 유입량 자료에 대해 자기상관함수와 교차상관함수를 이용하여 입력변수를 결정하였고, 정규화를 통한 전처리 과정을 거쳐 ANN 모형과 회귀모형을 이용한 예측모형을 구축하였으며, 예측성과의 향상을 위하여 군집 분석을 이용하여 오차를 재조정하였다. 이러한 오차 후처리 과정을 포함한 모형은 RMSE와 상관계수를 이용하여 비교 평가한 결과, 예측성과를 약 40% 정도 향상시켰다.
Journal of the Korean Data and Information Science Society
/
제21권6호
/
pp.1117-1124
/
2010
미세먼지 농도는 국가의 중요한 환경 척도 중의 하나이다. 본 연구에서는 경기도 남부에 위치한 수원시 2003년-2009년 미세먼지 농도를 주위에서 쉽게 구할 수 있는 대기자료와 기상자료를 이용하여 자기회귀오차모형으로 월별로 분석하였다. 미세먼지 농도 분석을 위한 대기자료는 이산화황, 이산화질소, 일산화탄소, 오존 등을 사용했고, 기상자료로는 일 최고온도, 풍속, 상대습도, 강수량, 일사량, 운량을 사용하였다. 분석 결과, 자기회귀오차모형으로 월별 미세먼지 농도를 13%-49% 정도 설명할 수 있다.
Journal of the Korean Data and Information Science Society
/
제23권3호
/
pp.535-542
/
2012
소비자물가지수는 국가의 중요한 경제 척도 중의 하나이다. 본 연구에서는 4개 도시, 서울, 부산, 대구, 광주지역의 소비자물가지수를 연구하였다. 자료는 모두 통계청에서 발췌하였고, 기간은 1998년-2011년 월별자료이며, 시계열분석 기법인 자기회귀오차모형으로 분석하였다. 소비자물가 분석을 위한 설명변수는 9가지 경제변수인 경기동행지수, 미국환욜, 생산자물가지수, 원유수입단가, 원유수입물량, 국제경상수지, 수입물가지수, 실업율, 화폐통화량을 사용하였다. 분석 결과, 자기회귀오차모형으로 각 지역별 소비자물가지수를 46%-52% 정도 설명할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.