• Title/Summary/Keyword: 자기회귀오차모형

Search Result 104, Processing Time 0.026 seconds

A comparison study on regression with stationary nonparametric autoregressive errors (정상 비모수 자기상관 오차항을 갖는 회귀분석에 대한 비교 연구)

  • Yu, Kyusang
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.157-169
    • /
    • 2016
  • We compare four methods to estimate a regression coefficient under linear regression models with serially correlated errors. We assume that regression errors are generated with nonlinear autoregressive models. The four methods are: ordinary least square estimator, general least square estimator, parametric regression error correction method, and nonparametric regression error correction method. We also discuss some properties of nonlinear autoregressive models by presenting numerical studies with typical examples. Our numerical study suggests that no method dominates; however, the nonparametric regression error correction method works quite well.

Information Arrival and Stock Market Volatility Dynamics (정보(情報)의 발생(發生)과 주가(株價)의 변동성(變動性))

  • Rhee, Il-King
    • The Korean Journal of Financial Management
    • /
    • v.16 no.2
    • /
    • pp.285-308
    • /
    • 1999
  • 증권의 가격형성에 유리한 뉴스와 불리한 뉴스가 도착할 때 이 뉴스가 주가의 변동성에 미치는 영향의 정도는 차이가 있다. 불리한 뉴스가 변동성에 미치는 영향도가 유리한 뉴스가 변동성에 미치는 영향도보다 크다. 따라서 불리한 뉴스가 발생할 때 형성되는 변동성의 양이 유리한 뉴스의 도착시보다 크다. 그리고 충격의 크기에 따라 이 충격이 야기하는 변동성의 양의 크기에도 차이가 존재한다. 일반 자기회귀 조건부 이분산 과정은 유리한 뉴스와 불리한 뉴스를 대칭적으로 반영하고 있다. 이 뉴스들을 비대칭적으로 포착하는 자기회귀 조건부 이분산 과정의 모형들을 실증적으로 분석하였다. 뉴스의 비대칭성과 규모를 적절히 포착하고 있는 모형들이 비선형 일반 자기회귀 조건부 이분산 과정, 지수 일반 자기회귀 조건부 이분산 과정과 정보 포착 자기회귀 조건부 이분간 과정임이 발견되었다. 이 중 비선형 일반 자기회귀 조건부 이분산 과정이 가장 좋은 모형으로 보인다. 비선형 일반 자기회귀 조건부 이분산 과정의 경우 예측오차의 승멱(power)이 약 1.5이다. 따라서 일반 자기회귀 조건부 이분산 과정의 예측오차의 승멱인 2에 비하여 작다. 이 사실은 일반 자기회귀 조건부 이분산의 예측오차의 승멱이 과도하게 측정되고 없음을 알 수 있다. 뉴스의 비대칭성과 규모를 반영하고 있는 모형들은 한결같이 예측오차의 크기에 적절한 가중치를 부여하여 예측오차의 크기를 조정하고 있다. 이 모형의 성질과 실증분석의 결과에 의하여 예측오차의 승멱은 2 이하로 수정하여 사용해야 한다는 점이 시사되고 있다. 음의 충격이 양의 충격보다 주가의 변동성을 크게 하고 없음이 발견되었다. 주가형성에 유리한 뉴스와 불리한 뉴스가 주가의 변동성에 미치는 영향의 차이와 충격의 중대성을 양으로 표시하는 규모의 차이를 반영해주는 변수들의 추정된 계수가 미국과 일본보다 절대값에 있어서 상당히 작다. 이 현상은 뉴스의 비대칭성과 규모보다는 발생하는 충격, 즉 뉴스 자체에 보다 민감하게 반응하고 있음을 보여주고 있다. 물론 투자자들이 뉴스의 비대칭성과 규모를 완전히 무시하고 투자활동을 전개하고 있다는 것을 의미하는 것은 아니다.

  • PDF

Efficient Estimation of Regression Coefficients in Regression Model with Moving Average Process (오차항이 이동평균과정을 따르는 회귀모형에서 회귀계수의 효율적 추정에 관한 연구)

  • 송석현;이종협;김기환
    • The Korean Journal of Applied Statistics
    • /
    • v.12 no.1
    • /
    • pp.109-124
    • /
    • 1999
  • 일반적으로 오차항이 자기상관되어 있는 선형회귀 모형에서는 회귀계수에 대한 보통최소제곱추정량이 효율적이지 못 하다고 알려져 있다. 그러나 이러한 일반화선형회귀모형에서 독립변수의 형태에 따라서는 OLSE의 사용 가능성을 제시하는 모형이 있다. 본 연구에서는 오차항이 일차 이동평균 과정을 따르는 선형회귀모형에서 여러 추정량들 (GLSE, APX, MAPX)에 대한 OLSE의 상대효율함수를 유도하고 비교 분석하고자 한다. 특히 소표본에서 정확한 상대효율값을 구하여 OLSE의 효율성이 크게 떨어지지 않거나 효율성이 나은 회귀모형들을 제시한다.

  • PDF

Residual-based copula parameter estimation (잔차를 이용한 코플라 모수 추정)

  • Na, Okyoung;Kwon, Sunghoon
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.267-277
    • /
    • 2016
  • This paper considers we consider the estimation of copula parameters based on residuals in stochastic regression models. We prove that a semiparametric estimator using residual empirical distributions is consistent under some conditions and apply the results to the copula-ARMA model. We provide simulation results for illustration.

Forecasting drug expenditure with transfer function model (전이함수모형을 이용한 약품비 지출의 예측)

  • Park, MiHai;Lim, Minseong;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.2
    • /
    • pp.303-313
    • /
    • 2018
  • This study considers time series models to forecast drug expenditures in national health insurance. We adopt autoregressive error model (ARE) and transfer function model (TFM) with segmented level and trends (before and after 2012) in order to reflect drug price reduction in 2012. The ARE has only a segmented deterministic term to increase the forecasting performance, while the TFM explains a causality mechanism of drug expenditure with closely related exogenous variables. The mechanism is developed by cross-correlations of drug expenditures and exogenous variables. In both models, the level change appears significant and the number of drug users and ratio of elderly patients variables are significant in the TFM. The ARE tends to produce relatively low forecasts that have been influenced by a drug price reduction; however, the TFM does relatively high forecasts that have appropriately reflected the effects of exogenous variables. The ARIMA model without the exogenous variables produce the highest forecasts.

Predicting ozone warning days based on an optimal time series model (최적 시계열 모형에 기초한 오존주의보 날짜 예측)

  • Park, Cheol-Yong;Kim, Hyun-Il
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.2
    • /
    • pp.293-299
    • /
    • 2009
  • In this article, we consider linear models such as regression, ARIMA (autoregressive integrated moving average), and regression+ARIMA (regression with ARIMA errors) for predicting hourly ozone concentration level in two areas of Daegu. Based on RASE(root average squared error), it is shown that the ARIMA is the best model in one area and that the regression+ARIMA model is the best in the other area. We further analyze the residuals from the optimal models, so that we might predict the ozone warning days where at least one of the hourly ozone concentration levels is over 120 ppb. Based on the training data in the years from 2000 to 2003, it is found that 35 ppb is a good cutoff value of residulas for predicting the ozone warning days. In on area of Daegu, our method predicts correctly one of two ozone warning days of 2004 as well as all of the remaining 364 non-warning days. In the other area, our methods predicts correctly all of one ozone warning days and 365 non-warning days of 2004.

  • PDF

A Reservoir Operation Plan Coupled with Storage Forecasting Models in Existing Agricultural Reservoir (농업용 저수지에서 저수량 예측 모형과 연계한 저수지 운영 개선 방안의 모색)

  • Ahn, Tae-Jin;Lee, Jae-Young;Lee, Jae-Young;Yi, Jae-Eung;Yoon, Yang-Nam
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.1
    • /
    • pp.77-86
    • /
    • 2004
  • This paper presents a reservoir operation plan coupled with storage forecasting model to maintain a target storage and a critical storage. The observed storage data from 1990 to 2001 in the Geum-Gang agricultural reservoir in Korea have been applied to the low flow frequency analysis, which yields storage for each return period. Two year return period drought storage is then designated as the target storage and ten year return period drought storage as the critical storage. Storage in reservoir should be forecasted to perform reasonable reservoir operation. The predicted storage can be effectively utilized to establish a reservoir operation plan. In this study the autoregressive error (ARE) model and the ARIMA model are adopted to predict storage of reservoir. The ARIMA model poorly generated reservoir storage in series because only observed storage data were used, but the autoregressive error model made to enhance the reliability of the forecasted storage by applying the explanation variables to the model. Since storages of agricultural reservoir with respect to time have been affected by irrigation area, high or mean temperature, precipitation, previous storage and wind velocity, the autoregressive error model has been adopted to analyze the relationship between storage at a period and affecting factors for storage at the period. Since the equation for predicting storage at a period by the autoregressive error model is similar to the continuity equation, the predicting storage equation may be practical. The results from compared the actual storage in 2002 and the predicted storage in the Geum-Gang reservoir show that forecasted storage by the autoregressive error model is reasonable.

Improving Forecasts of Dam Inflow Using Rescaling Errors From ANN and Regression Model (ANN과 회귀모형의 오차 수정을 통한 댐 유입량 예측 향상)

  • Jang, Sun-Woo;Yoo, Ji-Young;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1164-1168
    • /
    • 2010
  • 수자원이 우리 생활의 전반적으로 중요한 역할을 차지하면서 댐의 효율적인 운영과 안정적인 용수공급에 대한 연구는 지속적으로 수행되어지고 있다. 1990년대 이후 비선형적인 특성을 잘 모의하는 장점을 가진 인공신경망(ANN)을 이용하여 유입량 예측에 대한 많은 연구가 수행되었다. 하지만 ANN 모형을 포함한 회귀모형은 월 강우 및 유입량의 예측에 대해 간편하게 사용을 할 수 있지만, 예측의 정확성에 한계를 가지고 있다. 본 연구에서는 ANN 모형과 회귀모형의 예측오차를 후처리 과정을 통하여 오차를 줄임으로써 예측모형의 성과를 향상시키는 방법을 제안하였다. 연구지역은 금강수계의 대청댐 유역으로, 1982년 9월부터 2005년 12월에 해당하는 유역 내 11개 지점의 강우관측소에서 관측한 월 강우와 댐 유입량을 수집하여 모형을 구축하였다. 강우량과 유입량 자료에 대해 자기상관함수와 교차상관함수를 이용하여 입력변수를 결정하였고, 정규화를 통한 전처리 과정을 거쳐 ANN 모형과 회귀모형을 이용한 예측모형을 구축하였으며, 예측성과의 향상을 위하여 군집 분석을 이용하여 오차를 재조정하였다. 이러한 오차 후처리 과정을 포함한 모형은 RMSE와 상관계수를 이용하여 비교 평가한 결과, 예측성과를 약 40% 정도 향상시켰다.

  • PDF

Analysis of time series models for PM10 concentrations at the Suwon city in Korea (경기도 수원시 미세먼지 농도의 시계열모형 연구)

  • Lee, Hoon-Ja
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.6
    • /
    • pp.1117-1124
    • /
    • 2010
  • The PM10 (Promethium 10) data is one of the important environmental data for measurement of the atmospheric condition of the country. In this article, the Autoregressive Error (ARE) model has been considered for analyzing the monthly PM10 data at the southern part of the Gyeonggi-Do, Suwon monitoring site in Korea. In the ARE model, six meteorological variables and four pollution variables are used as the explanatory variables for the PM10 data set. The six meteorological variables are daily maximum temperature, wind speed, relative humidity, rainfall, radiation, and amount of cloud. The four air pollution explanatory variables are sulfur dioxide ($SO_2$), nitrogen dioxide ($NO_2$), carbon monoxide (CO), and ozone ($O_3$). The result showed that the monthly ARE models explained about 13-49% for describing the PM10 concentration.

Analysis of time series models for consumer price index (소비자물가지수의 시계열모형 연구)

  • Lee, Hoon-Ja
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.3
    • /
    • pp.535-542
    • /
    • 2012
  • The consumer price index (CPI) data is one of the important economic measurement of the country. In this article, the Autoregressive Error (ARE) model has been considered for analyzing the monthly CPI data at Seoul, Pusan, Daegu, and Gwangju Cities in Korea, In the ARE model, nine economic variables are used as the explanatory variables for the CPI data set. The nine explanatory variables are CCI (coincident composite index), won-dollar rate, producer price index, oil import price, oil import volume, international current account, import price index, unemployment rate, and amount of currency. The result showed that the monthly ARE models explained about 46-52% for describing the CPI.