• Title/Summary/Keyword: 자기소음

Search Result 377, Processing Time 0.024 seconds

Non-contact Longitudinal Modal Testing of a Non-ferromagnetic Pipe Using Magnetostrictive Patches (자기 변형 패치를 이용한 비자성 배관의 비접촉 종진동 모달 테스팅)

  • Park, Chan-Il;Han, Soon-Woo;Kim, Yoon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.3
    • /
    • pp.293-298
    • /
    • 2008
  • Non-contact modal testing for longitudinal modes of a pipe is discussed in this work. The suggested method can generate and measure longitudinal vibrations without mechanical contact by using the coupling phenomenon between deformation and magnetic field, known as the magnetostrictive effect. This effect has been used to generate and measure ultrasonic waves, but seldom used to deal with audible vibrations. In this investigation, the validity of the developed method in a typical vibration frequency range is checked with an Inconel pipe being used in nuclear power plants.

A study on the permanent levitation system for Maglev train (자기부상열차의 영구자석 부상계에 대한 연구)

  • Moon, Seok-Jun;Yun, Dong-Won;Cho, Hung-Je;Park, Sung-Whan;Kim, Byung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.82-87
    • /
    • 2007
  • A Halbach array is a special arrangement of permanent magnets which augments the magnetic field on one side of the device while cancelling the field to near zero on the other side. The application of this Halbach array magnet to the electrodynamic suspension for Maglev train has been recently studied in order to increase the levitation capability. This paper is focused on analytical method of the magnetic levitation system using Halbach array magnet. The suitability of the proposed method is verified with comparing to a finite element method. From this study, it is confirmed that the proposed method provides a reasonable solution with a little analysis time to the finite element method and the magnetic levitation system using Halbach array magnet is stable dynamically.

  • PDF

Suppression of the Disturbance Force in The Magnetically Levitated Train System Using Integral Sliding Mode Controller (자기부상열차 시스템에서 적분형 슬라이딩 모드 제어기를 이용한 부상억제력 제거)

  • Lee, Jun-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.722-726
    • /
    • 2007
  • In this paper we deal with a design of the integral sliding mode controller to suppress the disturbance force acting on the suspension system of the magnetically levitated train system. One of the important factors that cause the disturbance force acting on the suspension system comes from the low propulsion speed of linear induction motor. In this paper integral sliding mode controller is employed to reject the disturbance force produced by the propulsion system of the linear induction motor. In order to show the effectiveness of the designed controller a dynamic simulation is utilized and the sliding mode controller without integral compensator is compared with the proposed integral sliding mode controller to suppress the disturbance force.

  • PDF

A Modeling of a Variable-damping Mount Using Magneto-Rheological Fluid (자기점성유체를 이용한 가변감쇠 마운트의 모델화)

  • 안영공;양보석;삼하신
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.141-146
    • /
    • 2001
  • This paper deals with an application of Magneto-Rheological (MR) fluid to a small size mount for precision equipment of automobiles. MR fluid is known as a class of functional fluids with controllable apparent viscosity of fluid by the applied magnetic field strength. A typical MR fluid is a suspension where pure iron particles of 1-20 (m in diameter are dispersed in a liquid such as mineral oil or silicone oil, at the concentration of 20 - 40 vol%. Electro magnetic coil is installed at the bottom of a variable-damping mount filled with MR fluid, and performance of the mount was investigated experimentally. Furthermore, the Properties of the MR Mount on experimental study were explained analytically by mechanical model of the MR mount.

  • PDF

Case-Based Reasoning Using Self-Organization Map Neural Network (자기조직화지도 신경망을 이용한 사례기반추론)

  • Kim, Yong-Su;Yang, Bo-Suk;Kim, Dong-Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.832-835
    • /
    • 2002
  • This paper presents a new approach integrated Case-Based Reasoning with Self. Organization Map(SOM) in diagnosis systems. The causes of faults are obtained by case-base trained from SOM. When the vibration problem of rotating machinery occurs, this provides an exact diagnosis method that shows the fault cause of vibration problem. In order to verify the performance of algorithm, we applied it to diagnose the fault cause of the electric motor.

  • PDF

Design of a Step Motor with a Passive Magnetic Bearing (수동형 마그네틱 베어링이 결합된 스텝 모터의 설계)

  • Kwak, Ho-Seong;Choi, Dong-Hoon;Kim, Seung-Jong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1201-1207
    • /
    • 2006
  • This paper introduces a step motor with a passively levitated rotor which comprises a homopolar step motor and a passive magnetic bearing. Compared with conventional self-bearing motors which are mostly based on the active magnetic bearing technology, the proposed motor has a very simple structure and operating principle. For the levitation, it works just like passive magnetic bearings which use the repulsive force between permanent magnets. Halbach array is used to increase the bearing stiffness. On the other hand, its rotation principle is just the same with that of conventional motors. In this paper, we introduce the design scheme to avoid the flux interference possibly produced by electromagnets and permanent magnets, and show some results of FEM analysis to predict the performance of the proposed motor.

Basic Experiment for Lamb Wave Focusing by Phased Magnetostrictive Transducers in a Plate (자기변형 트랜스듀서의 위상차를 이용한 평판에서의 Lamb파 집속 기초 실험)

  • Lee, Joo-Kyung;Kim, Hoe-Woong;Lee, Ho-Cheol;Kim, Yoon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.3
    • /
    • pp.227-233
    • /
    • 2011
  • The ultrasonic guided wave phased array using magnetostrictive patch transducers is proposed. The magnetostrictive transducer has received much attention because it is cost-effective and capable to generate ultrasonic waves with a simple configuration. However, it has not been used for ultrasonic guided wave phased array applications until now. In this paper, we propose a magnetostrictive transducer based phased array system consisting of a multi-channel function generator, power amplifiers and Lamb wave magnetostrictive transducers. To check the performance of the ultrasonic guided wave phased array, several Lamb wave focusing experiments were carried out in an aluminum plate. The results demonstrated the capability of the developed array to focus the Lamb waves at specific target points.

Identification of Dynamic Stiffness of Squeeze Film Damper using Active Magnetic Bearing System as an Exciter (자기베어링 시스템을 가진지로 이용한 스퀴즈 필름 댐퍼의 동강성 계수 규명)

  • Kim, Keun-Joo;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.342.1-342
    • /
    • 2002
  • In this work, the dynamic characteristics of an oil-lubricated, short SFD with a central feeding groove are derived based on a theoretical analysis considering the effect of a groove. The validity of the analysis is investigated experimentally using an Active Magnetic Bearing (AMB) system as an exciter. For the theoretical solution, the fluid film forces of a grooved SFD are analytically derived so that the dynamic coefficients of a SFD are expressed in terms of its design parameters. (omitted)

  • PDF

Disturbance Observer Based Sliding Mode Control for Multi-DOF Active Magnetic Bearing System Subject to Base Motion (베이스 운동을 받는 다자유도 능동자기베어링계에서 외란 관측기 기반 슬라이딩모드 제어)

  • 강민식
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1182-1194
    • /
    • 2004
  • This paper addresses the application of an active magnetic bearing (AMB) system to levitate the elevation axis of an electro-optical sight mounted on a moving vehicle. In this type of system, it is desirable to retain the elevation axis in an air-gap between magnetic bearing stators while the vehicle is moving. To eliminate disturbance responses, a disturbance observer based sliding mode control is developed. This control can decouple disturbance observation dynamics from sliding mode dynamics and preserves the robustness of the sliding control. The sliding surfaces are designed in the consideration of scattering of received image. The proposed control is applied to a 2-DOF active magnetic bearing system subject to base motion. Along with experimental results, the feasibility of the proposed technique is illustrated.

A Study on the Sensorless Realization of Magnetic Levitation System (자기 부상계의 센서리스 실현에 관한 연구)

  • 김창화;정병건;양주호
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.195-203
    • /
    • 1998
  • The magnetic levitation system is utilized in the magnetic bearing of high-speed rotor because of little friction, no lubrication, no noise and so on. The magnetic levitation system need the feedback controller for the stabilization of system, and gap sensors are generally used to measure the gap. The use of sensor easily goes into troublesome caused by sensor failure discord between the measurement point and the control point etc. This paper presents the design of robust stabilizing contoller by $H_{\infty}$ control theory using the sensorless method proposed by authors in the magnetic levitation system. And we investigated both the validity of the designed controller and the usefulness of the sensorless magnetic levitation system through results of actual experiment.

  • PDF