• Title/Summary/Keyword: 잎 절위

Search Result 13, Processing Time 0.021 seconds

Photosynthesis by Leaf Age and Fruit Characteristics by Fruiting Nodes in Vertical and Hydroponic Cultivation of Oriental Melon Applied with Air Duct for High-temperature Season (고온기 송풍 덕트 적용 수직·수경재배 참외의 엽령별 광합성과 착과 절위별 과실 특성)

  • Youngsin Hong;Sohyun Park;Sungwook Yun;Jinkyung Kwon;Siyoung Lee;Sanggyu Lee;Jongpil Moon;Jaekyung Jang;Hyojun Bae;Jeongsu Hwang
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.89-96
    • /
    • 2023
  • This study was conducted to apply with an air duct for the cooling and a utilizing cultivating method that uses the fruiting node and the defoliation to the high-temperature vertical and hydroponic cultivation of the oriental melon. The lower fruiting node (LF) was to remove all third vines generated from 5 nodes of a secondary vine. The higher fruiting node (HF) was fruiting on the third vine generated from a first node of the third vine. The direction of the stem string; upward (UW), downward (DW). Four treatment conditions were applied with the LF-UW, LF-DW, HF-UW (control), and HF-DW. The leaf age of melon leaves was measured for photosynthesis at 3 days intervals, and the fruit characteristic was conducted on 79 fruits in each treatment. The photosynthesis rate steadily increased after leaf development, reaching 20.8 μmol CO2·m-2·s-1 on the 10 days, gradually increasing to 21.3 μmol CO2·m-2·s-1 on the 19 days, and reaching 23.4 μmol CO2·m-2·s-1 on the 32 days. After that, it lowered to 16.8 μmol CO2·m-2·s-1 on the 38 days and dropped significantly to 7.6 μmol CO2·m-2·s-1 on the 47 days. As a result of the fruit characteristics by fruiting nodes, the treatments of the fruit length was 12.6-13.4 cm, respectively, which was significant, and the fruit width was 7.9- 8.6 cm, respectively, was not significant. The soluble content ranged from 12.9 to 15.7°Brix, and the significance of all treatments, and higher than of LF-DW and HF-UW. The photosynthesis rate of melon leaves was good until 32 days after leaf development, but after that, the rate decreased. As for fruit quality, it was conformed that melons can be cultivated at the LF because the fruit enlargement and soluble content dose not decrease even when set at the LF. Results indicated that those can be used for LF and defoliation in the development of vertical and hydroponic cultivation method in high-temperature season.

Effect of Leaf and Pod Removal on Nodal Sink Characters in Soybean (잎과 꼬투리 제거가 콩의 절위별 Sink 형질 변이에 미치는 영향)

  • 박춘봉;이중호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.3
    • /
    • pp.371-381
    • /
    • 1995
  • The effects of leaf and pod removal on variation of nodal sink components in determinate soybean [Glycine max (L.) Merr.] cultivar 'Danyeobkong' were measured at the experiment field of Chonbuk Provincial Rural Development Administration in 1991. Contrary to the conventional numbering system, node order in this experiment was numbered from top to bottom node. The leaves and pods of main stem from terminal to 5th node, below 6th node, or branches were removed at the growth stage of beginning pod(R3). In the leaf removal treatment, number and weight of pod and seed were highly decreased in upper part leaf removal, especially in removed part. In the pod removal treatment, number and weight of pod and seed were slightly increased in the other part. Cracked seed coat ratios were also high in the leaf removal treatment compared with control but low in the pod removal treatment.

  • PDF

Favorable Irrigation Timing with Timer and Fruiting Position Focused on the Fruit Quality and Harvesting Time in Perlite Culture of Muskmelon (멜론의 펄라이트 재배시 타이머 제어에 의한 급액 시간과 착과절위가 과실의 품질과 수확시기에 미치는 영향)

  • Kim, H. J.;Kim, Y. S.
    • Journal of Bio-Environment Control
    • /
    • v.11 no.4
    • /
    • pp.157-162
    • /
    • 2002
  • The efficient timer-controlled irrigation and the favorable fruiting position were investigated far highly quality melon fruits from Feb.18 to July Si 1999. The nutrient solution was supplied either at every hour from 6:00 to 18:00 (T-1) or at 6:00, 8:00, 10:00, 11:00, 12:00, 12:30, 13:00, 13:30, 14:00, 14:30, IS:00,16:00, and 17:00 (T-2). A fruit was set at the first node of the fruit bearing branch from the 10, 12, or 13th node of the main stem. Pot weight was maintained at almost n constant level, regardless of the daily integrated solar radiation in T-2. Soluble solids content (SSC) and fresh weight of fruit were not significantly different among the irrigation treatments at each harvesting time. At the first harvest, SSC and fresh weight of fruit were not significantly different between the fruiting positions within the irrigation treatment. At the second harvest, SSC was higher in T-2 than T-1. The SSC was low in the fruit of the loth node in T-1, while it was not significantly different between fruiting positions in T-2. Fruit fresh weight was the highest at the 12 and 13th nodes in T-1, and the 13th node in T-2. Fresh and dry weights of leaf except petiole, regardless of harvesting time, increased as the node position was higher, The higher the fruiting position was, the lower the leaf weight was. Therefore, it is recommended to irrigate more frequently during the mid-noon. Fruits can be harvested earlier at the lower nodes in the spring crop production.

Studies on the morphological variation of plant organs of elongating node-part in rice plant (수도 신장 절위 경엽의 형태변이에 관한 연구)

  • 김만수
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.5 no.1
    • /
    • pp.1-35
    • /
    • 1969
  • Attempts were made to obtain the fundamental knowledge on the quantitative constitution status of leaves and stem of elongating node-part, and the relationships between these morphological characteristics along with the nitrogen contents of leaves and grain yield were examined varing application amounts of nitrogen in rice plant. I. The agronomic characteristics of leaves and nodes of elongation node-part (4-node parts from the top of stem) were observed at heading stage with 20 leading rice varieties of Kang Won district. The results are summarized as follows: 1. Leaf area magnitude of the flag and the fourth leaf was smaller than that of the second and the third with the average value of flag leaf 18.61 $cm^2$, the second leaf 21.84 $cm^2$, the third 21.52 $cm^2$ and the fourth 18.56 $cm^2$. The weight of leaf blade showed an isotonic tendency with the magnitude of leaf area with the value of the flag leaf 97.0 mg, the second leaf 117.1 mg, the third 115.4 mg, and the fourth 95.3 mg. The weight of each leaf sheath was remarkably larger at the higher node-part than at the lower node-part of the stem with the value of flag leaf sheath 176.3 mg, the second 163.7 mg, the third 163.4 mg and the fourth 123.9 mg. Accordingly, the total leaf weight of each part was larger at the second and the third leaf than at the first and the fourth. Total plant weight of each part (weight of leaf blade, leaf sheath, and culm) also was larger at the middle node-part. 2. Coefficients of variation for the varietal differences of the morphological characteristics of elongating node-part were 12.75% for the leaf area, 15.29% for the weight of leaf blade, 15.90%, for the weight of leaf sheath, 11.42% for the weight of internode, 15.45% for the leaf weight (leaf blade & leaf sheath) and 13.24% for the straw weight. And these coefficient values of the most characteristics were, on the whole, smaller at the second and the third node-part than at the first and the fourth node-part, but the coefficient value of the internode weight was rather small at the third and fourth node-part. 3. Constitutional ratio of each plant organ to the total plant weight in term of dry matter weight (excluding head and root wight) was 39.2% for the leaf sheath, 34.2% for the culm, 26.6% for the leaf blade. And ocnstitutional ratio of leaf sheath in term of dry matter weight was larger at the higher position in contrast with that of culm. 4. Average weight ration of leaf blade to culm, leaf sheath to culm, leaf blades to sheath and the leaf blades to culm plus leaf sheath were 77.7 %, 114.5%, 67.9% and 36.2%, respectively. With regard to the position of the plant organ, the weight ratio of leaf blade to culm and that of leaf sheath to culm were larger at higher part in contrast with that of leaf blade to leaf sheath. 5. Generally, there founded deep relationships between grain yield and each morphological characteristics of plant organ of elongating node-part as follows; Correlation coefficient between total area of 4 leaves (from flag to the fourth leaf) and grain yield was ${\gamma}$=0.666$^{**}$ In regard to the position of leaves, correlation coefficient values of flag, the second, the third and the fourth leaf were ${\gamma}$=0.659$^{**}$, ${\gamma}$=0.609$^{**}$, ${\gamma}$=0.464$^{*}$ and ${\gamma}$=0.523$^{*}$, respectively. Correlation coefficient between total weight of leaf blades and the grain yield was ${\gamma}$=0.678$^{**}$. In regard to the position of leaves, that of flag leaf was ${\gamma}$=0.691$^{**}$, and ${\gamma}$=0.654$^{**}$ for the second leaf, ${\gamma}$=0.570$^{**}$ for the third, and ${\gamma}$=0.544$^{**}$ for the fourth. Correlation between the weight of leaves (blade weight plus sheath weight) and the grain yield showed similar values. In the relationship between plant weight and grain yield there also was significant correlation, but with highly significant value only for the first node-part. There appeared correlation between total weight of leaf sheath and grain yield with the value of ${\gamma}$=0.572$^{**}$ and in regard to the position of each leaf sheath the values were ${\gamma}$=0.623$^{**}$ for the flag leaf, ${\gamma}$=0.486$^{**}$ for the second leaf, ${\gamma}$=0.513$^{**}$ for the third, ${\gamma}$=0.450$^{**}$ for the fourth. However, there was no significant correlation between culm weight and grain yield. 6. With respect to in gain yield, varietal differences in magnitude of leaf area, weight of leaf blade, leaf weight per unit area, weight of leaf sheath, culm weight, total leaf and stem weight were larger in the case of high yielding varieties and decreased in accordance with decreasing yield. And this tendency also was shown in the varietal differences of magnitude of each part. Variation in magnitude of each part for the leaf area, weight of leaf blade, culm weight was significantly small in high yielding varieties compared to low yielding varieties. 7. Plant constitutional ratio of each organ of the elongating node-part in term of weight magnitnde varied to som extent according to varieties indicating leaf blade 27.6%, leaf sheath 39.5%, culm 32.9% in the case of high yielding varieties, leaf blade 25.5%, leaf sheath 38.1%, culm 36.4% in the case of low yielding varieties, and medium yielding varieties showed intermadiate values. 8. Far higher values of the weight ration of leaf blade to culm and leaf sheath to culm were given to the high yielding varieties compared to low yielding varieties. And medium yielding varieties showed intermadiate values. II. Effects of application rate of nitrogen on the morphological characteristics of the elongating node-part, nitrogen content of leaf blade, and their relation with the grain yield of the rice were observed with 3 rice varieties; Shin No.2, Shirogane, and Jinheung varying application amounts of nitrogen as 8kg, 12kg and 16kg per 10 are. 1. As for the variation of morphological magnitude s affected by the amounts of nitrogen application, total leaf area (4 leaves from the flag leaf) increased to 16.5% at 12kg N plot, and about 30% at 16kg N polt compared to 8kg N plot and total weight of leaf blade also increased to similar extent, respectively, in contrast with weight of leaf sheath increasing 4.9% and 7.8%, respectively. However, the weight of culm decreased to 1.5% and 11.2%at the 12kg N plot and 16kg N plot, respectively, and these decreasing rate was noted at the nodes of lower part. 2. As for the verietal differences in variation of morphological magnitude as affected by the amount of nitrogen fertilization, leaf area coefficient value of variation of the total leaf area was 15.40% for Shin No. 2, 12.87% for Shirogane, and 10.99% for Jinheung. With respect to the position of nodes, the largest variation of leaf blade magnitude was observed at the fourth for Shin No. 2, the second for Shirogan, and flag leaf for Jinheung. And there also was an isotonic varietal difference in the weight of leaf blade. Variation in total culm weight showed varietal differences with the coefficient value of 7.72% for Shin No.2, 12.11% for Shirogane, and 0.94% for Jinheung. There also was varietal differences in the variation according to the position of nodes. 3. Variation of each elongating node-part related to the fertilization amount decreased with the increase of fertilization amount in the items of leaf area, weight of leaf sheath, culm weight, but weight of leaf sheath varied more at heavier fertilization than at others. 4. Constitutional ratio of each organ excluding head also varied with fertilization amount; constitutional ratio of leaf blade increased much with the increasing amount of fertilization in contrast with the response of culm eight. However, constitutional ration of the weight of leaf sheath was not much affected. 5. Lower value of the ration of leaf blade to culm was given to the 8kg N per 10 are plot, and the ratio of leaf blade to leaf sheath decreased with the increasing amount of fertilization in contrast with the increase in the ratio of leaf sheath to culm. however, the ration of leaf blade to culm plus leaf sheath decreased. 6. With the increase of nitrogen fertilization, leaf area, weight of leaf blade and leaf sheath increased. Accordingly, grin yield also increased to some extent. It was noted that culm weight was changed inversely to the changes in grain yield, but the degree of this variation varied with varietal characteristics. 7. Nitrogen content of leaves at heading and fruiting stage varied with the fertilization amount, and average nitrogen content of leaves of the varieties used 2.19%, 2.49% and 2.74% at the plot of 8kg N, and 12kg N and 16kg N per 10 are, respectively, at heading time, and 0.80%, 0.92% and 1.03% at each plot at fruiting stage. Thus, nitrogen content of leaves increased much with the increasing amount of fertilization, and higher value was given to the leaves on the higher position of elongating node-part. 8. There also was variation of nitrogen content of leaves in accordance with the varieties. However higher grain yield was obtained from the plants retaining higher nitrogen content in leaves at heading or fruiting stage.

  • PDF

Estimation of Leaf Area Using Leaf Length, Leaf width, and Lamina Length in Tomato (엽장, 엽폭, 엽신장을 이용한 토마토의 엽면적 추정)

  • Lee, Jae Myun;Jeong, Jae Yeon;Choi, Hyo Gil
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.325-331
    • /
    • 2022
  • One of the most important factors in predicting tomato growth and yield is the leaf area. Estimating leaf area accurately is the beginning of an effective tomato plant growth assessment model. To this end, this study was conducted to identify the most effective model for estimating plant leaf area through the measurement of tomato plant leaves. Leaf area (LA), leaf length (L), leaf width (W), and lamina length (La) were measured for all leaves of 5 plants at two-week intervals. The correlation between LA and tomato-leaf-independent variables showed a strong positive relationship with the formulas La × W, L × W, La + W, and L + W. For LA estimation, a linear model using the formula LA = a + b (La2 + W2) gave the most accurate estimation (R2 = 0.867, RMSE = 88.76). After examining the positions of upper, middle, and lower leaves from September to December, the coefficient of determination (R2) values for each model were 0.878, 0.726, and 0.794 respectively. The most accurate estimation came from the model that used the upper leaves of the plants. The high accuracy of the upper-leaf-based model is judged by the 50% defoliation performed by farmers after October.

Paddy Weeds Serving as the Possible Reservoirs for Rice Bacterial Leaf Blight (답잡초를 대상으로 벼 흰빛잎아름병 기주절위구명)

  • Kim, K.U.;Jeh, S.Y.;Sohn, J.K.;Lee, S.K.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.26 no.1
    • /
    • pp.40-44
    • /
    • 1981
  • This study was conducted to identify the possibility of paddy weeds served as the host plant of bacterial leaf blight, using various bacterial groups and inoculation methods. The results obtained can be summarized as follows. 1. Alopecurns spp., Setaria viridis P. Beauv., and Leersia juponica Makino were identified the most susceptible to bacterial leaf blight, similar to Milyang 23 which was used as a susceptible check variety. The others such as Digitaria adscendens Hem., Eleusine indic aGaertin., Cyperns serotinus Rottb, Cyperns difformis L. showed slight infection but most of broadleaf weeds were resistant to bacterial leaf blight. 2. Weed species showing early susceptibility maintained their susceptibility throughout the growth stages. Group I of bacterial leaf blight was the most effective to develop infection symptom to weeds. 3. Pin and scissor inoculation methods were more effective mean for infection than spray method which was used without wound.

  • PDF

Translocation of $^14$C-assimilates During Grain Filling and Influence of Defoliation and Emasculation on Grain Weight in Oats (연맥 등숙기 동안 $^14$C물질의 전유와 절엽 및 제영이 종실중에 미치는 영향)

  • 이호진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.24 no.4
    • /
    • pp.38-44
    • /
    • 1979
  • $^14$C-sucrose was labeled on detached panicles and $^14{CO}_2$ on flag leaves or panicles of intact plants to study grain sink activity in spring oats cultivar Pennfield. Defoliation and emasculation experiment was conducted to study source-sink relationship during grain filling. Specific activity of groat rose up to 15 days after anthesis and declined rapidly to 18 days. Daily gain of groat wt. matched closely with specific activity of. groat during grain filling. Primary groats were higher in specific activity of groat than secondary groats.$^14{CO}_2$ exposure on panicle was three times higher in specific activity of groat than $^14{CO}_2$exposure on flag leaf. In the defoliation and emasculation experiment, groat wt. of Pennfield oats decreased as ratio of source/sink decreased. Half number of spikelets with half leaf area was no different in groat wt. compared to control, but normal number of spikelets with zero leaf area was decreased 16% in groat wt., indicating a significant compensation by green area on panicle.

  • PDF

Effects of Soil EC on Seed Germination, Seeding Growth, Initiation of Female Flower and Fruit Growth of Cucumber (Cucumis sativus L.) Plants (토양 EC가 오이의 종자발아, 유묘의 생장, 자화착생 및 과실비대에 미치는 영향)

  • Chung, Hee-Don;Jang, In-Suk;Choi, Young-Jun
    • Horticultural Science & Technology
    • /
    • v.19 no.4
    • /
    • pp.495-500
    • /
    • 2001
  • Seed germination, seedling growth, plant establishment after transplanting, set of female flowers, and subsequent fruit growth were examined in cucumbers grown in soils having varying electrical conductivities (EC) of $1.0-5.0dS{\cdot}m^{-1}$ adjusted by adding different amount of a commercial compound fertilizer (N : $P_2O_5$ : $K_2O$ = 21 : 17 : 17). Slower seed germination was recorded in soils having EC value of $3.0dS{\cdot}m^{-1}$ or higher and little or no germination took place in soils with EC $4.0dS{\cdot}m^{-1}$ until 8 days after sowing. Suppression of seedling growth was apparent in soils having EC level of $2.5dS{\cdot}m^{-1}$. All seedlings died eventually at EC level of $3.5dS{\cdot}m^{-1}$. Leaf color became progressively dark green with the increase in EC from 1.0 to $3.0dS{\cdot}m^{-1}$. The first female flower was formed at higher node and the number of days required for the first flowering of female flower increased with the increase in EC values up to $3.0dS{\cdot}m^{-1}$. Occasionally, leaf yellowing and self-topping symptoms appeared in plants grown in soils having EC level of $3.0dS{\cdot}m^{-1}$.

  • PDF

Role of Mesophyll Morphology in Determination of Leaf Photosynthesis in Field Grown Soybeans (포장생육대두의 엽광합성과정에서 엽육세포 형태의 역할)

  • Yun, Jin Il;Lauer, Michael J.;Taylo, S.Elwynn
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.6
    • /
    • pp.560-567
    • /
    • 1991
  • Photosynthetic variation in field grown soybean [Glycine max (L.) Merr. cv Hodgson78] was studied in relation to leaf anatomical variation. Variations in mesophyll morphology were accentuated by manipulating source and sink size. At R3 stage, two treatments were started: one was thinning and continu-ous debranching(6. 5 plants rather than 26 plants per m of row and remaining plants were debranched weekly), and the other was continuous partial depodding (allowing only one pod to develop at each mainstem node). Gas exchange characteristics, mesophyll cell volume and surface area per unit leaf surface, and microclimatic parameters were measured on the intact terminal leaflet at the 10th node. Observations were made 5 times with 3 to 4 day intervals starting R4 stage. Two models were used to compute leaf photosynthetic rates: one considered no effect of mesophyll morphology on photosynthesis, and the other considered potential effects of variations in mesophyll cell volume and surface area on diffusion and biochemical processes. Seventy nine percent of total photosynthetic variations observed in the experiment was explained by the latter, while 69% of the same variations was explained by the former model. By incorporating the mesophyll morphology concept, the predictability was improved by 14.6% in the field condition. Additional Index Words: photosynthesis model, leaf anatomy, Glycine max (L.) Merr., mesophyll surface area, mesophyll cell volume.

  • PDF

Changes in Inorganic Element Concentrations of Drained Nutrient Solution and Leaves in Compliance with Numerical Increment of Fruiting Node during Hydroponic Cultivation of Cherry Tomato (방울토마토 수경재배 시 착과 절위 증가에 따른 공급액, 배액 및 식물체의 무기성분 농도 변화)

  • Lee, Eun Mo;Park, Sang Kyu;Kim, Gyoung Je;Lee, Bong Chun;Lee, Hee Chul;Yun, Yeo Uk;Park, Soo Bok;Choi, Jong Myoung
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.361-367
    • /
    • 2017
  • Production cost as well as environmental contamination can be reduced by reuse of drained nutrient solution in hydroponic. This research was conducted to obtain the information in changes in inorganic elements concentration of supplied and drained nutrient solution as well as of plant leaves. To achieve the objective, the samples of supplied and drained solution and cherry tomato leaf tissues were periodically collected and analyzed during the hydroponic cultivation. The electrical conductivity (EC) of supplied and drained nutrient solution in early growth stage of cherry tomato were measured as around $2.0dS{\cdot}m^{-1}$, but those values move up with the passage of time reaching to $2.0dS{\cdot}m^{-1}$ at flowering stage of 9th fruiting node. The pHs of drained solution in early growth stage were 6.4 to 6.7, however those showed a tendency to get lowered to 5.9 to 6.1 as time passed during the crop cultivation. The concentration differences of $NO_3-N$, P, K, Ca, and Mg between supplied and drained solution were not distinctive until flowering stages of 4th fruiting nodes, while those in drained solution moved up after the stage. The tissue N contents of leaves decrease gradually and those of K and Ca increased as crops grew. However, Tissue P and Mg contents were maintained similarly from transplant to end-crop. The above results would be used in correction of drained nutrient solution when element compositions are varied compared to supplied solution in hydroponic cultivation of tomatoes.