• Title/Summary/Keyword: 입자 표상

Search Result 14, Processing Time 0.021 seconds

An Analysis of the Uses of Visual Representations of Particles in the Middle School Science Textbooks in Matter Units (중학교 과학 교과서 물질 단원에 제시된 시각적 입자 표상의 활용 방식 분석)

  • Yousun Jeon;Sunghoon Kim;Taehee Noh;Sukjin Kang
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.5
    • /
    • pp.353-361
    • /
    • 2023
  • This study analyzed the uses of visual representations of particles in the matter units of the middle school science textbooks developed under the 2015 Revised National Curriculum. The material units in four textbooks were divided into explanation, inquiry, and evaluation sections, and visual representations of particles presented in the science textbooks were analyzed by the use type, the activity type, and the level of activity. In the explanation section, the visual representations of particles were mainly presented in the auxiliary use type, and in the inquiry and evaluation section, they were mainly presented in a direct use type. In terms of the activity types of the direct use of visual representations of particles, the interpreting activity was mainly presented in the explanation and evaluation sections, while the generating activity and completing activity were presented in relatively higher proportion in the inquiry section than the other two sections. In terms of activity level, identifying was the most common activity level in the explanation section, and inferring was the most common activity level in the inquiry and evaluation sections. Based on these results, the implications for the presentation and uses of visual representations of particles in science textbooks are discussed.

Using a Learning Progression to Characterize Korean Secondary Students' Knowledge and Submicroscopic Representations of the Particle Nature of Matter (Learning Progression을 적용한 중·고등학생의 '물질의 입자성'에 관한 지식과 미시적 표상에 대한 특성 분석)

  • Shin, Namsoo;Koh, Eun Jung;Choi, Chui Im;Jeong, Dae Hong
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.5
    • /
    • pp.437-447
    • /
    • 2014
  • Learning progressions (LP), which describe how students may develop more sophisticated understanding over a defined period of time, can inform the design of instructional materials and assessment by providing a coherent, systematic measure of what can be regarded as "level appropriate." We developed LPs for the nature of matter for grades K-16. In order to empirically test Korean students, we revised one of the constructs and associated assessment items based on Korean National Science Standards. The assessment was administered to 124 Korean secondary students to measure their knowledge and submicroscopic representations, and to assign them to a level of learning progression for the particle nature of matter. We characterized the level of students' understanding and models of the particle nature of matter, and described how students interpret various representations of atoms and molecules to explain scientific phenomena. The results revealed that students have difficulties in understanding the relationship between the macroscopic and molecular levels of phenomena, even in high school science. Their difficulties may be attributed to a limited understanding of scientific modeling, a lack of understanding of the models used to represent the particle nature of matter, or limited understanding of the structure of matter. This work will inform assessment and curriculum materials development related to the fundamental relationship between macroscopic, observed phenomena and the behavior of atoms and molecules, and can be used to create individualized learning environments. In addition, the results contribute to scientific research literature on learning progressions on the nature of matter.

Analysis of Scientific Explanations and the Affordances Constructed in Gifted Elementary Students' Science Drawings and Science Writings about Air Pressure: Pedagogical Use of Multimodal Representations (공기 압력에 대한 초등영재 학생들의 과학그리기 및 과학글쓰기에서 구성된 과학적 설명과 어포던스 분석 - 다중모드적 표상의 교육적 활용 -)

  • Chang, Jina;Park, Joonhyeong;Park, Jisun
    • Journal of Korean Elementary Science Education
    • /
    • v.42 no.1
    • /
    • pp.161-177
    • /
    • 2023
  • Scientific explanation is composed of various representations such as texts, diagrams, and graphs, and each representation contributes to expanding scientific meaning by connecting similar but slightly different meanings as a 'mode'. Based on this perspective of social semiotics, we aimed to identify the characteristics of meaning formation demonstrated in students' science writing (verbal mode) and science drawing (visual mode) and to discuss the pedagogical use of multimodal representations. To that end, 18 science drawings and 18 scientific writings constructed by science-gifted elementary students on air pressure were collected. The characteristics of the drawn and written explanations were then analyzed from the affordance perspective in social semiotics. In science drawing, students showed a tendency to use the affordance of the visual mode to infer concrete changes from the particle view, such as the movement of air particles, the number of air particles, and the collision of particles. In science writing, students used the affordance of the verbal mode mainly to infer the causal relationship between the concept of air pressure and other related factors at an abstract level. Based on those results, we discuss the educational implications and provide concrete examples of how to use the unique affordances of each form to complement one another.

Development and Application of the Multiple Representation-Based Learning Strategies Using Augmented Reality on the Concept of the Particulate Nature of Matter (물질의 입자성 개념에서 증강현실을 활용한 다중 표상 학습 전략의 개발과 적용)

  • Lee, Jaewon;Park, Gayoung;Noh, Taehee
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.4
    • /
    • pp.375-383
    • /
    • 2020
  • In this study, we investigated the effects of the multiple representation-based learning strategies using augmented reality in terms of students' conceptual understanding, achievement, and enjoyment of science lessons. 136 8th-grade students in a coed middle school were randomly assigned to the treatment and the control group. The students learned the concept of the particulate nature of matter related to the properties of substances for four class periods. The multiple representation-based learning strategies designed to facilitate the connecting and integrating representations provided from augmented reality were developed and administered to the students of the treatment group. Results of two-way ANCOVA revealed that the scores of a conceptions test and enjoyment of science lessons test of the treatment group were significantly higher than those of the control group, regardless of their prior science achievement. In a conceptions test, there was a significant difference in the concept of preservation of particles. However, the difference was not statistically significant in the concept of distribution and motion of particles. In terms of an achievement test, there was a significant interaction effect by their prior science achievement. The scores of low-level students were significantly improved, but the effects were not significant to high-level students. On the bases of the results, educational implications for effective teaching and learning using augmented reality are discussed.

Analysis of Problems in the Submicro Representations of Acid·Base Models in Chemistry I and II Textbooks of the 2009 & 2015 Revised Curricula (2009 개정교육과정과 2015 개정교육과정의 화학 I 및 화학 II 교과서에서 산·염기 모델의 준미시적 표상에 대한 문제점 분석)

  • Park, Chul-Yong;Won, Jeong-Ae;Kim, Sungki;Choi, Hee;Paik, Seoung-Hey
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.1
    • /
    • pp.19-29
    • /
    • 2020
  • We analyzed the representations of acid-base models in 4 kinds of Chemistry I and 4 kinds of Chemistry II textbooks of the 2009 revised curriculum, and 9 kinds of Chemistry I textbooks and 6 kinds of chemistry II textbooks of the 2015 revised curriculum in this study. The problems of the textbook were divided into the problems of definitions and the representations of the logical thinking. As a result of the study, the lack of the concept of chemical equilibrium had a problem with the representation of reversible reactions in the definition of the Brønsted-Lowry model in the Chemistry I textbooks of 2009 revised curriculum, it also appeared to persist in Chemistry I textbooks of 2015 revised curriculum which contains the concept of chemical equilibrium. The representations of logical thinking were related to particle kinds of conservation logic, combinational logic, particle number conservation logic, and proportion logic. There were few problems related to representation of logical thinking in Chemistry I textbook in 2009 revision curriculum, but more problems of representations related to logics are presented in Chemistry I textbooks in 2015 revision curriculum. Therefore, as the curriculum is revised, the representations of chemistry textbooks related to acid and base models need to be changed in a way that can help students' understanding.

Analysis of the Pre-service Chemistry Teachers' Cognition of the Nature of Model in the Design and Development Process of Models Using Technology: Focusing on Boyle's Law (테크놀로지를 활용한 모델의 설계와 개발 과정에서 나타난 예비화학교사의 모델의 본성에 대한 인식 분석: 보일 법칙을 중심으로)

  • Na-Jin Jeong;Seoung-Hey Paik
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.5
    • /
    • pp.378-392
    • /
    • 2023
  • The purpose of this study is to analyze the pre-service chemistry teachers' cognition of the nature of model in process of designing and developing models using technology. For this purpose, 19 pre-service chemistry teachers' in the 3rd grade of a education college located in the central region observe experimental phenomena related to Boyle's law presented in the 7th grade science textbook and researchers required the design and development of a model related to the observed experimental results using technology. Based on previous studies, the nature of model were classified into two aspect: 'Representational aspect' and 'Explanatory aspect'. The 'Representational aspect' was classified into 'Representation', 'Abstraction', and 'Simplification', and the 'Explanatory aspect' was classified into 'Analysis', 'Interpretation', 'Reasoning', 'Explanation', and 'Quantification'. The pre-service chemistry teachers' cognition were analyzed by the classification. As a result of the study, the 'Representation' of the 'expressive aspect' was uniformized in the form of space that changes in volume, and the pressure was expressed as the Brightness inside the cylinder or frequency of color change of particles for 'Abstraction'. In the case of 'Simplification', the particle collision was expressed as a perfectly elastic collision, but there was a group that could not simply indicate the type of particle. In the 'Explanatory aspect', in the case of 'Analysis', volume was classified as a manipulated variable, and in the case of 'Interpretation', most groups analyzed the change in pressure through the collision of gas particles. However, the cognition involved in 'Reasoning' was not observed much. In the case of 'Explanation', there were groups that did not succeed in explanation because the area where the particles collided was not set or incorrectly set, and in the case of 'Quantification', there was a group that formulated the number of collisions per unit time, and on the contrary, there was a group that could not quantify the number of collisions because they could not be expressed in numbers.

An Analysis of the Uses of External Representations in Matter Units of 7th-Grade Science Digital Textbooks Developed Under the 2015 Revised National Curriculum (2015 개정 교육과정에 따른 중학교 1학년 디지털교과서의 물질 단원에서 나타난 외적 표상의 활용 실태 분석)

  • Song, Nayoon;Hong, Juyeon;Noh, Taehee
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.6
    • /
    • pp.416-428
    • /
    • 2020
  • This study analyzed the uses of external representations presented in the matter units of the 7th-grade science digital textbooks developed under the 2015 revised national curriculum. The level, form, presentation, and interactivity of external representations presented in 5 types of digital textbooks were analyzed. As for the level, the macroscopic level of representations was mainly presented. The macroscopic level and microscopic level of representations were presented together in the particle description. As for the form, visual-verbal and visual-nonverbal representations were usually presented across the board. Very few audial-verbal and audial-nonverbal representations were presented. Visual-verbal and audial-verbal representations were mostly presented in formal form, and visual-nonverbal representations were mostly presented in illustration without movement. The presentation of representations was analyzed in three aspects. First, visual-verbal and visual-nonverbal representations were mainly presented together and none of audial-verbal and visual-nonverbal representations were presented together. When the representations of the audial-verbal, visual-nonverbal, and visual-verbal were presented together, some of the information presented in audial-verbal representations was repeatedly presented in the visual-verbal representations. Second, audial-nonverbal representations not related to learning content were presented along with other representations. Third, there were few cases of arranging visual-verbal and visual-nonverbal representations on the next pages. Audialverbal and visual-nonverbal representations were always presented synchronized. As for the interactivity, the manipulation level was mainly presented in the main area, and the feedback level was mainly presented in the activity area. The adaptation level and the communication level of interactivity were presented very few. Based on the results, the implications for the direction of constructing digital textbooks were discussed.

The Effect of Classes Using the Scratch for Quasi-Microscopic Representation Approaches in Dynamic Equilibrium Learning (동적 평형 학습에서 준미시적 표상 접근을 위한 스크래치 활용 수업의 효과)

  • Seongjae Lee;Sungki Kim;Seoung-Hey Paik
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.4
    • /
    • pp.241-252
    • /
    • 2023
  • This study aims to increase students' understanding of equilibrium, one of the many concepts in chemistry that students find difficult. Dynamic equilibrium must be dealt with at the sub-microscopic level where the real and the representation overlap in order to microscopically understand the constant motion and interaction of particles and to understand the macroscopic characteristics expressed through this. However, as a result of analyzing 9 Chemistry I textbooks, the expression approach for equilibrium had some limitations. As a strategy to understand equilibrium at a sub-microscopic approach, the classes using scratch were consisted of a total of 4 hours, and it was implemented with 56 students. The classes were composed of 6 steps, and it was designed to understand equilibrium step by step. As a result of comparing the pretest and post- test, the number of students who got both the microscopic and macroscopic explanations of chemical equilibrium correct increased largely. Through this, it was possible to get a glimpse of the applicability of classes using scratch as the approach strategy of the sub-microscopic representation.

Analysis of Scientific Models in Science Textbooks for the 7th Grade (중학교 과학 교과서 물질 영역의 과학적 모형 유형 분석)

  • Kim, Ae-Jung;Park, Hyun-Ju;Kim, Chan-Jong;Kim, Heui-Baik;Yoo, June-Hee;Choe, Seung-Urn
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.3
    • /
    • pp.363-370
    • /
    • 2012
  • The purpose of the study was to classify scientific models in the seventh grade science textbooks of the 2007 revised science curriculum. The three chapters of 'three states of material', 'motion of molecule', and 'change of state and energy' were investigated. There were two types of the scientific model as 'mode of representation' and 'attribute of representation'. The mode of representation was composed of 'action model', 'analogical model', 'symbolic model', and 'theoretical model' and the attribute of representation was composed of 'static model' and 'dynamic model'. The results showed that the action model and the analogical model were used primarily in mode of representation. The dynamic model were widely used in attribute of representation. Area of matters dealt with conception of molecules and aimed for students to understand the arrangement and movement of molecule microscopically about macroscopic state in a daily life. Tis study could help to recognize the limitations of scientific models on current textbooks and offer more useful information in planning lessons and organizing textbooks for the future.

Drawing and Writing as Methods to Assist Students in Connecting and Integrating External Representations in Learning the Particulate Nature of Matter with Multiple Representations (물질의 입자적 성질에 대한 다중 표상 학습에서 외적 표상들 간의 연계와 통합을 촉진시키는 방안으로서의 그리기와 쓰기)

  • Kang, Hun-Sik;Kim, Bo-Kyung;Noh, Tae-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.25 no.4
    • /
    • pp.533-540
    • /
    • 2005
  • This study investigated the effects of drawing and writing as methods to assist students in connecting and integrating multiple external representations provided in learning the particulate nature of matter. Seventh graders (N=224) at a coed middle school were assigned to a control group, a drawing group, and a writing group. The students were taught about "Boyle's Law" and "Charles's Law" for two class periods. Students observed macroscopic phenomena through experiments. After this observation, students in the control group learned the topic with both external visual and verbal representations simultaneously. Students in the drawing group drew their mental model from the external verbal representation provided, and then compared their drawing with external visual representation. Students in the writing group wrote their mental model from the external visual representation provided, and then compared their writing to the external verbal representation. The two-way ANCOVA results revealed that the scores of a conception test for the writing group were significantly higher than those for the control group. While the drawing group performed better than the control group, the difference is relatively smaller. There were no significant interactions between the instruction and spatial visualization ability in the scores of the conception test. Most students perceived the writing or drawing activities helpful in understanding the concepts, and a few students responded that the writing or drawing activity was interesting. Educational implications were discussed.