• 제목/요약/키워드: 입력 벡터

검색결과 935건 처리시간 0.024초

승자 노드의 빈도 수를 이용한 개선된 SOM 알고리즘 (Enhanced SOM Algorithm by Using Frequency Number of Winner Node)

  • 이준행;김재용;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 추계종합학술대회
    • /
    • pp.268-271
    • /
    • 2003
  • SOM 알고리즘에서 가중치 조정은 입력 벡터와 승자 노드의 대표 벡터간의 차이만큼 조정되고 승노드의 대표벡터에 입력벡터의 정보를 반영하게 된다. 여기서 그 정보를 반영할 때 입력벡터와 승자노드의 대표 벡터간에 차이가 크면 승자 노드의 대표 벡터에 입력벡터를 기억시키기 위해 입력 벡터의 정보를 더 많이 반영해야 한다. 이러한 문제점을 개선하기 위해 본 논문에서는 승자 노드의 대표벡터와 입력벡터간의 출력오류를 0과1사이의 정규화된 값으로 출력오류를 계산하여 학습률을 조정하고 승자 노드의 저 활용 문제를 개선하기 위해 학습 중에 각 승자 노드의 대표 벡터들이 수정되고 선택되어지는 횟수가 가능한 동등해지도록 각 노드의 승자 빈도수를 가중치 조정에 반영하는 개선된 SOM 알고리즘을 제안하였다. 제안된 방법의 인식 성능을 평가하기 위해 주민등록증에서 추출한 숫자 패턴 50개를 대상으로 실험한 결과, 제안된 방법의 인식 성능이 기존의 SOM 알고리즘보다 개선된 것을 확인하였다.

  • PDF

벡터 차의 절대값 합을 이용한 고속 벡터 부호화 알고리즘 (A Fast VQ Encoding Algorithm Using Sum of Absolute Difference of Vectors)

  • 백성준
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
    • /
    • pp.235-237
    • /
    • 1998
  • 벡터양자화기의 부호화 단계에서 계산량을 줄이는 새로운 알고리즘을 제안한다. 벡터양자화기의 부호화는 주어진 입력벡터에 가장 가까운 코드워드를 찾는 것인데 모든 코드워드와 거리계산을 필요로 하기 때문에 많은 계산량이 소요되믈 효율적인 알고리즘이 필요하다. 본 논문에서는 입력벡터와 코드워드와의 유클리디안 거리계산 대신에 벡터 차의 절대값 합을 이용하여 주어진 입력벡터에 최단거리의 코드워드가 될 수 없는 코드워드를 제외함으로써 유클리디안 거리계산을 최소화하여 계산량을 줄이는 알고리즘을 제안된 방법을 고정 소수점 연산을 이용한 DSP 칩에 효과적이며 이는 실험 결과를 통하여 확증할 수 있다.

  • PDF

신경망을 이용한 실장 PCB 패턴인식 시스템 (Mounted PCB Pattern Recognition System Using Neural Network)

  • 김상철;정성환
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 1998년도 춘계학술발표논문집
    • /
    • pp.411-416
    • /
    • 1998
  • 본 논문은 Wavelet 변환 영역에서 특징 벡터를 추출하여 ART2 신경회로망으로 실장 PCB 패턴을 인식하는 알고리즘을 제안한다. PCB 형태 정보는 Wavelet에 의해 주파수 영역으로 변환되고, 이들 계수 행렬로부터 특징 벡터로서 추출된다. ART2 신경회로망은 이러한 특징 벡터들을 입력벡터로 사용하여 인식한다. 실장 PCB 영상 55장을 사용하여 실험한 결고, 학습된 입력패턴은 물론 비학습 입력패턴에 대해서도 약 99%의 인식율을 얻었다. 또한 제안된 방법은 Wavelet 변환 영역사에서 수직, 수평, 대각선 정보만으로 특징 벡터를 구축함으로써 특징 추출 과정이 비교적 간단하고 특징 벡터의 수도 줄일 수 있어, 효과적인 특징벡터의 추출이 가능함을 보였다.

  • PDF

퍼지 제어 기법을 이용한 FCM 기반 RBF 네트워크 (FCM-based RBF Network Using Fuzzy Control Method)

  • 김태형;박충식;김광백
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2008년도 제38차 하계학술발표논문집 16권1호
    • /
    • pp.149-154
    • /
    • 2008
  • FCM 기반 RBF 네트워크는 서로 다른 학습 구조가 결합된 혼합형 모델로서, 입력층과 중간층의 학습 구조는 FCM 알고리즘을 적용하고, 중간층과 출력층 사이의 학습 구조는 Max_Min 신경망을 적용한다. 입력층과 중간층의 학습시 입력벡터와 중간층의 노드중에서 중심과 입력벡터간의 가장 가까운 노드를 승자 노드로 선택하여 출력층으로 전달한다. 그리고 중간층과 출력층 사이의 학습 구조는 Max_Min 신경망을 적용하여 중간층의 승자 뉴런이 출력층의 입력벡터로 적용한다. 하지만 많은 패턴이 입력벡터로 제시될 경우 학습 성능이 저하되는 단점이 있다. 따라서 본 논문에서는 중간층과 출력층의 학습 구조인 Max_Min 알고리즘의 학습 성능을 개선시키기 위해 퍼지 제어시스템을 이용하여 학습률을 동적으로 조정하는 퍼지 제어 기법을 이용한 FCM 기반 RBF 네트워크를 제안한다. 제안된 방법의 학습 성능을 평가하기 위하여 컨테이너 영상에서 추출한 숫자, 영문 식별자를 학습 데이터로 적용한 결과, 기존의 ART2 기반 RBF 네트워크보다 학습 시간이 적게 소요되고, 학습의 수렴성이 개선된 것을 확인하였다.

  • PDF

휘도를 고려한 기준색 선택 기반의 다단계 벡터 오차 확산법 (Multi-level Vector Error Diffusion Based on Primary Color Selection Considering Lightness)

  • 박태용;조양호;이명영;하영호
    • 대한전자공학회논문지SP
    • /
    • 제41권5호
    • /
    • pp.77-85
    • /
    • 2004
  • 본 논문에서는 64개 기준색을 사용한 다단계 벡터 오차 확산법에서 나타나는 밝은 영역에서의 색 자극 문제를 개선하는 방법을 제안하였다. 벡터 오차 확산법은 양자화 과정에서 입력 벡터와 기준색 벡터간의 기하학적 거리만을 이용하기 때문에 밝은 영역에서 어두운 기준색이 선택되는 색 자극이 발생한다 이러한 문제를 해결하기 위해서 오차 보정된 입력 벡터의 채도를 계산하여 유채색과 무채색으로 나누고, 유채색일 경우 입력 벡터의 휘도를 이용하여 밝은 영역, 중간 밝기 영역, 어두운 영역으로 구분한다. 밝은 영역일 경우 60개 유채색 기준색중에서 입력 벡터와의 휘도차가 작은 N개의 후보 기준색을 구성한다. 최종 기준색을 선택할 때는 N개의 후보 기준색과 4개의 무채색 기준색중에서 오차 보정된 입력 벡터와의 최소 기하학적 거리를 가지는 기준색을 출력색으로 결정한다 실험 결과, 제안한 방법은 자은 영역에서 색 자극이 줄어들어 시각적으로 보기 좋은 결과를 보였다.

품사 임베딩과 음절 단위 개체명 분포 기반의 Bidirectional LSTM CRFs를 이용한 개체명 인식 (Named Entity Recognition Using Bidirectional LSTM CRFs Based on the POS Tag Embedding and the Named Entity Distribution of Syllables)

  • 유홍연;고영중
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2016년도 제28회 한글및한국어정보처리학술대회
    • /
    • pp.105-110
    • /
    • 2016
  • 개체명 인식이란 문서 내에서 인명, 기관명, 지명, 시간, 날짜 등 고유한 의미를 가지는 개체명을 추출하여 그 종류를 결정하는 것을 말한다. 최근 개체명 인식 연구에서는 bidirectional LSTM CRFs가 가장 우수한 성능을 보여주고 있다. 하지만 LSTM 기반의 딥 러닝 모델은 입력이 되는 단어 표상에 의존적이기 때문에 입력이 되는 단어 표상을 확장하는 방법에 대한 연구가 많이 진행되어지고 있다. 본 논문에서는 한국어 개체명 인식을 위하여 bidirectional LSTM CRFs모델을 사용하고, 그 입력으로 사용되는 단어 표상을 확장하기 위해 사전 학습된 단어 임베딩 벡터, 품사 임베딩 벡터, 그리고 음절 기반에서 확장된 단어 임베딩 벡터를 사용한다. 음절 기반에서 단어 기반 임베딩 벡터로 확장하기 위하여 bidirectional LSTM을 이용하고, 그 입력으로 학습 데이터에서 추출한 개체명 분포를 이용하였다. 그 결과 사전 학습된 단어 임베딩 벡터만 사용한 것보다 4.93%의 성능 향상을 보였다.

  • PDF

품사 임베딩과 음절 단위 개체명 분포 기반의 Bidirectional LSTM CRFs를 이용한 개체명 인식 (Named Entity Recognition Using Bidirectional LSTM CRFs Based on the POS Tag Embedding and the Named Entity Distribution of Syllables)

  • 유홍연;고영중
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.105-110
    • /
    • 2016
  • 개체명 인식이란 문서 내에서 인명, 기관명, 지명, 시간, 날짜 등 고유한 의미를 가지는 개체명을 추출하여 그 종류를 결정하는 것을 말한다. 최근 개체명 인식 연구에서는 bidirectional LSTM CRFs가 가장 우수한 성능을 보여주고 있다. 하지만 LSTM 기반의 딥 러닝 모델은 입력이 되는 단어 표상에 의존적이기 때문에 입력이 되는 단어 표상을 확장하는 방법에 대한 연구가 많이 진행되어지고 있다. 본 논문에서는 한국어 개체명 인식을 위하여 bidirectional LSTM CRFs모델을 사용하고, 그 입력으로 사용되는 단어 표상을 확장하기 위해 사전 학습된 단어 임베딩 벡터, 품사 임베딩 벡터, 그리고 음절 기반에서 확장된 단어 임베딩 벡터를 사용한다. 음절 기반에서 단어 기반 임베딩 벡터로 확장하기 위하여 bidirectional LSTM을 이용하고, 그 입력으로 학습 데이터에서 추출한 개체명 분포를 이용하였다. 그 결과 사전 학습된 단어 임베딩 벡터만 사용한 것보다 4.93%의 성능 향상을 보였다.

  • PDF

N-time 시스톨릭 어레이 구조를 가지는 벡터 미디언 필터의 하드웨어 아키텍쳐 (A New N-time Systolic Array Architecture for the Vector Median Filter)

  • 양영일
    • 융합신호처리학회논문지
    • /
    • 제8권4호
    • /
    • pp.293-296
    • /
    • 2007
  • 본 논문에서는 벡터 미디언 값을 계산하기 위한 시스톨릭 어레이 구조의 벡터 미디언 필터 구조를 제안하였다. 컬러영상처리에서 벡터 신호는 빨강, 녹색 파랑의 3개의 요소로 이루어져 있다. 벡터 미디어 필터는 빨강, 녹색 파랑 요소로 이루어진 벡터 신호들 중에서 벡터 신호를 크기 순서대로 나열하였을 때 가운데 값을 갖는 벡터 신호를 구하는 필터로, 컬러 영상처리에서 기본적으로 많이 사용되는 필터이다. 벡터 신호가 N 개가 있을 때, 지금 까지 제안된 구조에서는(3N+1) 클럭이 필요하나, 제안된 구조에서는 (N+2) 클럭이 소요된다. 그리고 기존의 구조에서는 N 개의 입력 벡터 신호는 미디언 필터에 병렬로 입력되어야 하나 제안된 구조에서는 입력 신호는 직렬로 인가된다. FPGA를 사용하여 구현하였다.

  • PDF

Grid search와 Transformer를 통한 그룹 행동 인식 (Group Action Recognition through Grid search and Transformer)

  • 김기덕;이근후
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.513-515
    • /
    • 2023
  • 본 논문에서는 그리드 탐색과 트랜스포머를 사용한 그룹 행동 인식 모델을 제안한다. 추출된 여러 사람의 스켈레톤 정보를 차분 벡터, 변위 벡터, 관계 벡터로 변환하고 사람별로 묶어 이를 TimeDistributed 함수에 넣고 풀링을 한다. 이를 트랜스포머 모델의 입력으로 넣고 그룹 행동 인식 분류를 출력하였다. 논문에서 3가지 벡터를 입력으로 하여 합치고 트랜스포머 계층을 거친 모델과 3가지 벡터를 입력으로 하고 계층적으로 트랜스포머 모델을 거쳐 행동 인식 분류를 출력하는 두 가지 모델을 제안한다. 3가지 벡터를 합친 모델에서 클래스 분류 정확도는 CAD 데이터 세트 96.6%, Volleyball 데이터 세트 91.4%, 계층적 트랜스포머 모델은 CAD 데이터 세트 96.8%, Volleyball 데이터 세트 91.1%를 얻었다

  • PDF

FVQ(Fuzzy Vector Quantization) 사상화에 의한 화자적응 음성합성 (Speaker-Adaptive Speech Synthesis by Fuzzy Vector Quantization Mapping)

  • 이진이;이광형
    • 한국지능시스템학회논문지
    • /
    • 제3권4호
    • /
    • pp.3-20
    • /
    • 1993
  • 본 연구에서는 퍼지사상화(fuzzy mapping)에 의한 사상된(mapped) 코드북을 사용하는 화자적은 음성합성 알고리즘을 제안한다. 입력화자와 기준화자의 코드북은 신경망 클러스터링 알고리즘인 자율경쟁 학습을 사용하여 작성된다. 사상된 코드북은 입력 음성벡터에 대한 두 화자의 대응 코드벡터의 소속갑(membership value)으로 퍼지 히스토그랩을 작성하여 이들을 1차 결합함으로써 얻어지는 퍼지사상화에 의하여 작성된다. 음성합성시에는 사상된 코드북을 사용하여 입력화자의 음것을 퍼지 벡터양자화한 다음, CFM 연산으로 합성함으로써 입력화자에 적응된 합성음을 얻는다. 실험에서 여러 입력화자로 30대의 남성, 20대의 여성음을 사용하였고 기준음석으로 입력음성과는 다른 20대의 여성음성을 사용하였다.실험에 사용된 음성데이타는 문장/안녕하십니까/와/굿모닝/이다. 실험결과는 각각의 입력화자에 기준화자 음성이 적응된 합성음을 얻었다.

  • PDF