본 논문에서는 입력전압을 감지하지 않는 전류연속/임계동작모드 active power factor correction(PFC) circuit을 제안하였다. 기존의 입력전압을 감지하지 않는 PFC circuit의 경우 출력전류가 낮은 경 부하 조건에서 DCM 동작을 수행하고, 이에 따라 PF가 감소하는 문제가 발생한다. 제안한 PFC circuit은 70KHz의 주파수로 CCM 동작을 수행하고, 경 부하 조건에서 최대 200KHz까지 스위칭 주파수가 가변되는 CRM 동작을 수행하도록 하였다. 이를 통해 경 부하 조건에서 PF가 감소하는 문제를 해결하였다. PFC controller IC는 $0.35{\mu}m$ BCDMOS 공정을 이용하여 제작하였으며, 240W급 PFC prototype을 제작하여 실험하였다. 제안한 PFC circuit은 기존의 PFC circcuit 대비 최대 10%의 역률이 향상되었고, IEC 61000-3-2 Class D 규격에 따른 경 부하 조건에서는 최대 4% 역률이 향상되었다.
입력 전압 범위 감지 회로를 이용해서 저전력 6비트 플래시 500Ms/s ADC를 설계하였다. 입력 전압 범위 감지 회로는 변환기내 모든 비교기들 중에서 25%만 동작시키고, 나머지 75%는 동작시키지 않는 방법을 채택하므로 저전력 동작을 가능하게 설계 및 제작하였다. 설계된 회로는 0.13um CMOS 공정기술을 이용해서 제작하였고, 1.2V 전원전압에서 68.8mW 전력소모, 4.9 유효 비트수, 4.75pJ/step의 평가지수가 측정되었다.
건물에 설치된 엘리베이터는 승강기 호출 버튼과 목적층으로의 선택을 위한 입력 버튼으로 구성되어 있다. 엘리베이터 버튼은 승강기를 이용하는 사람이 직접 눌러야 입력이 된다. 이러한 승객의 입력은 버튼의 오염으로 인해 전염병에 감염될 수 있다. 이러한 문제점을 해결하기 위한 수단으로 비접촉식 버튼이 요구되고, 이는 정전용량 방식을 적용하여 물체의 근접을 감지한다. 적외선 열감지 센서를 부착하여 인체의 체온을 측정하는 기능을 구현하고 UV-LED를 부착하여 버튼의 살균 기능을 제공한다. 물체가 없을 때의 출력파형을 측정하고 물체가 근접할 때의 출력 파형을 측정하여 버튼이 선택되고 적외선온도측정 센서를 통해 체온이 측정되며, 사용자가 없을 때 UV-LED를 점등하여 살균하였다. 비접촉식 엘리베이터 버튼은 전염병을 옮기는 바이러스의 감염을 방지할 수 있는 효과가 있고, 체온을 감지하여 CIVID 19의 양성 확진자를 선별할 수 있어 감염병 예방에도 효과가 있을 것으로 기대된다.
영상처리를 통한 이동 물체 인식과 화질 개선 등의 연구에서 조명 변화가 성능에 큰 영향을 미치기 때문에 조명 변환에 대한 대응은 컴퓨터 비전 응용 분야에서의 중요한 관심사 중 하나이다. 조명 변화를 감지할 수 있게 되면 변화가 있는 시점에서부터 적절한 개선 알고리즘을 적용함으로써 인식률 향상 및 화질 개선 효과를 증대시킬 수 있다. 이에 본 연구에서는 급격한 조명 변화를 감지함에 있어 실시간성을 얻기 위하여 지역 정보를 이요하고 퍼지 논리를 도입하여 이를 효과적으로 감지하는 방법을 제안한다. 급격한 조명 변화를 감지하는 효과적인 방법으로 모서리 영역과 가운데 영역에 대한 각각의 히스토그램의 평균과 편차, 그리고 변화 추이를 반영하기 위하여 이전 프레임의 각 영역에 대한 히스토그램의 평균과 편차와의 변화량을 입력으로 급격한 조명 변화가 있을 때 입력 값의 변화 패턴을 퍼지 규칙으로 만들어 조명 변화를 감지하도록 하였다. 또한 움직이는 물체에 가려 발생하는 변화와 구별하기 위하여 전체 영역에 대한 평균과 편차 변화량을 도입하여 논리적으로 추론하여 차이를 구별할 수 있도록 하였고 점진적으로 조명이 변화하는 것을 감지할 수 있도록 하였다. 다양한 테스트 데이터에 대해 객관적인 정확도 측정 기법을 이용하여 민감도와 특이도를 계산하여 제안한 방법의 효용성을 보였다. 적응형 뉴로-퍼지 추론시스템을 도입하여 대비제한 적응 히스토그램 평활화 (CLAHE)의 매개 변수를 자동으로 선택할 수 있는 방법을 제안하여 급격한 조명의 변화를 감지한 결과를 바탕으로 화질을 개선할 수 있음을 보였다.
성능위주 소방설계(PBD)의 과정에서 화재 및 피난모델링의 신뢰성을 확보하기 위해서는 화재감지기 모델의 높은 예측성능이 필수적으로 요구된다. 본 연구의 목적은 FDS와 같은 대와동모사(Large Eddy Simulation) 화재모델에 적용될 수 있는 연기감지기의 정확한 작동 개시시간을 예측하기 위한 수치적 입력정보를 측정하는 것이다. 이를 위해 화재감지기의 장치특성을 측정할 수 있는 FDE (Fire Detector Evaluator)를 제작하였으며, 이온화식 연기감지기에 대한 Heskestad 및 Cleary 모델의 입력변수가 측정되었다. 또한 일반적으로 사용되는 FDS의 기본 값과 측정된 값이 적용된 연기감지기의 작동 개시시간을 정량적으로 비교하였다. 주요 결과로써, 본 연구에서 검토된 이온화식 연기감지기의 장치 물성은 FDS에 적용된 기본 값과 매우 큰 차이를 보이고 있으며, 연기감지기 작동 개시시간이 최대 15분 이상 차이가 발생되었다. PBD의 신뢰성을 향상시키기 위하여 향후 연구에서는 보다 다양한 연기 및 열감지기의 장치물성에 대한 데이터베이스(DB)가 구축될 예정이다.
본 논문에서는 최근 새롭게 발견된 low-rate TCP (LRT) 공격과 이 공격을 감지하기 위한 DTW (Dynamic Time Warping) 알고리즘을 분석하고 공격 검출에 대한 성능 향상을 위한 스케일링 기반 DTW (Scaling based DTW; S-DTW) 알고리즘을 소개한다. Low-rate TCP 공격은 대용량 트래픽을 사용한 기존 서비스 거부 공격과는 다르게 공격 트래픽의 평균 트래픽 양이 적어서 기존 DoS 공격에 대한 감지 방식으로는 검출되지 않는다. 그러나 LRT 공격은 주기적이고 짧은 버스트 트래픽으로 TCP 연결의 최소 재전송 타임아웃 (Retransmission Timeout; RTO)에 대한 취약성을 공격하기 때문에 패턴 매칭으로 공격 감지가 가능하다. 기존 메커니즘에 의한 감지 기법은 공격 패턴의 입력 샘플 템플릿을 기준으로 입력 트래픽이 정상 트래픽인지 또는 공격 트래픽인지를 판별한다. 이 과정에서 입력 트래픽의 특성에 따라서 DTW 알고리즘은 정상 트래픽을 공격 트래픽으로 오판하는 문제점을 갖는다. 따라서 본 논문에서는 이러한 오판을 줄이기 위하여 기존 DTW 알고리즘의 전처리 과정인 자기상관 (auto-correlation) 처리를 분석하여 오판을 규명한다. 또한 스케일링 기반으로 자기상관 처리 결과를 수정하여 공격 트래픽과 정상 트래픽의 특성의 차이를 증가시킴으로써 DTW 알고리즘에 의한 공격 감지 능력을 향상시킨다 마지막으로 다양한 스케일링 방식과 표준편차에 의한 트래픽 분석 방법도 논의된다.
본 논문에서는 불꽃 감지를 위한 임베디드 시스템에 적합한 딥러닝 구조를 제안한다. 제안하는 딥러닝 구조의 불꽃 감지 과정은 불꽃 색깔 모델을 사용한 불꽃 영역 검출, 불꽃 색깔 특화 딥러닝 구조를 사용한 불꽃 영상 분류, 검출된 불꽃 영역의 $N{\times}N$ 셀 분리, 불꽃 모양 특화 딥러닝 구조를 사용한 불꽃 영상 분류 등의 4가지 과정으로 구성된다. 첫 번째로 입력 영상에서 불꽃의 색만을 추출한 다음 레이블링하여 불꽃 영역을 검출한다. 두 번째로 검출된 불꽃 영역을 불꽃 색깔에 특화 학습된 딥러닝 구조의 입력으로 넣고, 출력단의 불꽃 클래스 확률이 75% 이상에서만 불꽃 영상으로 분류한다. 세 번째로 앞 단에서 75% 미만 불꽃 영상으로 분류된 영상들의 검출된 불꽃 영역을 $N{\times}N$ 단위로 분할한다. 네 번째로 $N{\times}N$ 단위로 분할된 작은 셀들을 불꽃의 모양에 특화 학습된 딥러닝 구조의 입력으로 넣고, 각 셀의 불꽃 여부를 판단하여 50% 이상의 셀들이 불꽃 영상으로 분류될 경우에 불꽃 영상으로 분류한다. 제안된 딥러닝 구조의 성능을 평가하기 위하여 ImageNet의 불꽃 데이터베이스를 사용하여 실험하였다. 실험 결과, 제안하는 딥러닝 구조는 기존의 딥러닝 구조보다 평균 29.86% 낮은 리소스 점유율과 8초 빠른 불꽃 감지 시간을 나타내었다. 불꽃 검출률은 기존의 딥러닝 구조와 비교하여 평균 0.95% 낮은 결과를 나타내었으나, 이는 임베디드 시스템에 적용하기 위해 딥러닝 구조를 가볍게 구성한데서 나온 결과이다. 따라서 본 논문에서 제안하는 불꽃 감지를 위한 딥러닝 구조는 임베디드 시스템 적용에 적합함이 입증되었다.
GPS의 신뢰성 확보를 위한 무결성 모니터링기법 중 RAIM(Receiver Autonomous Integrity Monitoring) 기법에 대한 비교 실험을 수행하였다. RAIM은 사용자 단독으로 무결성을 모니터링 할 수 있는 방법으로 기존의 RAIM 기법들 중 대표 적인 방법인 거리비교방법, 최소자승잔차법, 패리티기법 그리고 가중최소자승법을 구현하고 그 성능을 평가하였다. 구현된 알고리즘의 평가를 위하여 2004년 1월 1일 PRN23번 위성시계고장에 대한 고장검출을 실시하였고 그 결과 최소자승잔차법과 가중최소자승법이 고장상태를 100% 감지하는 것을 확인하였다. 거리비교방법의 경우에도 1개 에폭에서 오경보가 발생한 오류를 제외하면 고장상태를 비교적 잘 감지하는 것으로 나타났다. 또한 위성 별로 임의의 바이어스를 입력하여, 구현된 4개의 RAIM 기법이 바이어스에 반응하는 정도를 비교하였다. 그 결과 거리비교방법과 최소자승잔차법에서 9-13m 바이어스를 입력하였을 때 모든 위성의 오작동을 감지하였고 가중최소자승법의 경우에는 15m 바이어스 크기에서 모든 위성의 오작동을 감지하였다.
본 논문에서는 다용도로 사용 가능한 UV LED 바의 최적설계를 하였다. UV LED는 자외선을 방출하기 때문에 사용목적상 일정하게 자외선을 방출하는 것이 중요하다. 일정한 자외선이 방출되기 위해서는 동작 가능 입력 전압 범위 내에서 정전류원으로 구동되어야 하고 자외선 활용 특성 상 자외선 방출 유지 시간이 길기 때문에 방열이 특히 중요하다. 따라서 소비전력이 최소화 되도록 설계해야 한다. 또한 인체 보호가 필수적이기 때문에 거리 감지 센서와 블루투스를 이용해 인체 감지 여부에 따라 동작할 수 있게 알고리즘을 구성하였다. 자외선 UVA를 방출하기 위해 365nm UV LED 3개가 직렬로 사용되었으며 입력 전압 12V와 정전류 500mA에서 동작하며 효율은 87.5%, 소비전력은 6.006W이다. 그리고 자외선 조사량은 루트론 계측기로 측정하였을 경우 10cm 거리에서 $5.35mW/cm^2$으로 측정 되었다.
본 논문에서는 인터넷 상의 영상에 기반한 교통 감시 시스템을 구현한다. 영상 기반의 교통 감시 시스템은 루프 감지기 등의 센서를 이용한 방법에 비해 비용과 설치, 유지, 보수면에서의 장점으로 인하여 많이 연구되고 있다. 제안한 시스템은 인터넷상에서 FPA(Field Processing Agent)와 TSM(Traffic Surveillance Manager)으로 구성되며, FPA는 TSM에게 도로 영상과 차량의 속도, 도로 점유율과 같은 교통 정보를 제공한다. 차량의 평균 속도와 도로 점유율은, 도로색 영상과 연속된 입력 영상간의 샘플링 지점의 색상 차이변화를 이용하여 추출한다. 제안한 방법은 근사적인 교통정보를 추출해 주며, 입력 영상 전체에 대한 처리 과정 없이 제한된 영역만을 처리하기 때문에, 실시간 감시 시스템을 구축하는데 용이하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.