본 연구에서는 경주시 내남면 일대를 대상으로 KOMPSAT MSC(Multi Spectral Camera) 영상(2007.06.12)을 이용하여 TCT(Tasseled-Cap Transformation), NDVI(Normalized Difference Vegetation Index) 알고리즘을 적용하여 분포도를 작성 하였으며 TCT DN 값을 기초로 영상 강조 및 변환을 통한 임상분류에 적합한 밴드 추출과 NDVI 분포도에서의 DN값을 기초로 산림현장 조사 결과에서 취득된 결과와의 비교 분석을 통하여 알고리즘에 대한 임상분류에 있어서의 변별력 분석을 수행하였다. 본 연구를 통하여 KOMPSAT MSC 영상에서의 임상분류를 위한 식생 알고리즘 적용 가능성을 검토하고자 한다.
This study presents a discussion on the biomedical laboratory science (formally clinical laboratory science or medical laboratory science) with the identity of biomedical laboratory science, as well as the academic classification system for systematic approach. The field of biomedical laboratory science is not registered in the academic research area classification system of the National Research Foundation of Korea. Since the inception of the first department of biomedical laboratory science in 1963, about 52 departments were since established. Despite the scientific identity, biomedical laboratory science have not been acknowledged professionally in most institutions. Observing the academic research area classification, the physical therapy, occupational therapy, and dental hygiene science are systematically classified and approved the identities by the authorities. This study is freshly academic area classification system of the biomedical laboratory science. The contents of this study are summarized as follows. The medical laboratory technologist's discipline is considered within the medical and science category, clinical pathology in class, and biomedical laboratory science in division. Sections of biomedical laboratory science include hematology, transfusionology, immunology, biochemistry, microbiology, parasitology, science, molecular biology, histology, cytology, cardiopulmonary physiology, and neurophysiology.
This study was carried out to evaluate high resolution satellite imagery of IKONOS for classifying the land cover, especially forest type. The IKONOS imagery of 11km$\times$11km size was taken on April 24, 2000 in Bong-pyoung Myun Pyungchang-Gun, Kangwon Province. Land cover classes were water, coniferous evergreen, Larix leptolepis, broad-leaved tree, bare land, farm land, grassland, sandy soil and asphalted area. Supervised classification method with algorithm of maximum likelihood was applied for classification. The terrestrial survey was also carried out to collect the reference data in this area. The accuracy of the classification was analyzed with the items of overall accuracy, producer's accuracy, user's accuracy and k for test area through the error matrix. In the accuracy analysis of the test area, overall accuracy was 94.3%, producer's accuracy was 77.0-99.9%, user's accuracy was 71.9-100% and k and 0.93. Classes of bare land, sandy soil and farm land were less clear than other classes, whereas classification result of IKONOS in forest area showed higher performance than that of other resolution(5-30m) satellite data.
Proceedings of the Korea Contents Association Conference
/
2012.05a
/
pp.343-344
/
2012
본 연구는 중증도가 높은 신경계중환자를 대상으로 중환자 중증도 분류도구와 Glasgow coma scale 적용의 유용성을 검정하고자 하는데 있다. 본 연구에서 대상자의 일반적 특성 및 임상 관련 특성에 따른 사망률 확인, 중환자 중증도 분류도구(CPSCS)의 일반적 특성, 임상관련 특성에 따른 중증도 차이, GCS의 일반적 특성과 임상관련 특성에 따른 중증도 차이를 파악하고, 임상적 유용성을 검정하고자 한다.
Fractional values resulted from the spectral mixture analysis could be used to classify not only urban area with various materials but also forest area in more detailed spatial scale. Especially South Korea is largely consist of mixed forest, so the spectral mixture analysis is suitable as a classification method. For the successful classification using spectral mixture analysis, extraction of optimal endmembers is prerequisite process. Though geometric endmember selection has been widely used, it is barely suitable for forest area. Therefore, in this study, we modified Iterative Error Analysis (IEA), one of the most famous algorithms of image endmember selection which extracts pure pixel directly from the image. The endmembers which represent deciduous and coniferous trees are automatically extracted. The experiments were implemented on two sites of Compact Airborne Spectrographic Imager (CASI) and classified forest area into two types. Accuracies of each classification results were 86% and 90%, which mean proposed algorithm effectively extracted proper endmembers. For the more accurate classification, another substances like forest gap should be considered.
Jo Myung-Hee;Jo Yun-Won;Kim Sung-Jae;Song Wan-Young;Chung Young-Kyo
Proceedings of the KSRS Conference
/
2006.03a
/
pp.359-364
/
2006
최근 GIS를 비롯한 공간정보기술의 눈부신 발전으로 국토전반에 대한 정보화와 과학적인 관리기법이 확산되고 있다. 이에 효율적인 산림관리를 위하여 위성영상과 지리정보시스템을 이용한 산림정보가 구축되고 있으나, 산림지역이라는 지리특성상 현장 출입이 제한적이고 위험하여 정보수집에 어려움이 있다. 본 연구에서는 효율적인 산림정보구축을 위하여 남제주군을 대상으로 고해상도 위성영상과 공간정보추출언어인 SML(Spatial Modeler Language)을 이용하여 다양한 모델별 산림지역의 임상정보를 추출, 임상분류를 위한 모델링 기법을 개발하였다. 또한 l/5,000도엽을 기준으로 표본점을 배치하고 임상, 하층식생, 입지 및 토양에 대한 현지조사를 수행하였으며, 추출자료와의 상관성 분석 및 검증을 통하여 공간정보 기술을 이용한 산림정보 구축의 기반을 마련하고자 하였다.
The taxonomy of bacteria in the field of clinical microbiology is in a state of constant flux. A large-scale revamping of the classification and nomenclature of anaerobic bacteria has taken place over the past few decades, mainly due to advances in molecular techniques such as 16S rRNA and whole genome sequencing (WGS). New genera and species have been added, and existing genera and species have been reclassified or renamed. A major role of the clinical microbiological laboratories (CMLs) is the accurate identification (ID) and appropriate antimicrobial susceptibility testing (AST) for clinically important bacteria, and rapid reporting and communication of the same to the clinician. Taxonomic changes in anaerobic bacteria could potentially affect the choice of appropriate antimicrobial agents and the antimicrobial breakpoints to use. Furthermore, current taxonomy is important to prevent treatment failures of emerging pathogenic anaerobes with antimicrobial resistance. Therefore, CMLs should periodically update themselves on the changes in the taxonomy of anaerobic bacteria and suitably inform clinicians of these changes for optimum patient care. This article presents an update on the taxonomy of clinically important anaerobic bacteria, together with the previous names or synonyms. This taxonomy update can help guide antimicrobial therapy for anaerobic bacterial infections and prevent treatment failure and can be a useful tool for both CMLs and clinicians.
To develop a technique classifying patients based on computerized clinical data followed by validity verification by comparing with nurse's examination. Class scores were determined by nurses for a day on 348 resident patients in 7 wards of a general hospital according to KPCS-1. The class scores were simultaneously evaluated by reviewing the computerized clinical data acquired from the hospital management information system. These two class scores were both significantly different among different departments as well as disease patterns. Intraclass correlation analysis resulted a very high correlation coefficient of 0.96(p<0.01) between the two scoring methods, but the clinical data scores were somewhat higher. An automated patient classification system seemed possible to be developed in future with further enhancement of the present results based on computerized clinical data without manual scoring, which can be applied for performance evaluation as well as workforce planning.
이 연구에서는 다중시기 Landsat 영상을 이용하여 강원도 일대 임상의 변화를 살펴보고 상록수의 영급을 구분하는 알고리즘을 개발하여 적용하였다. 1980년대에서 현재까지 축적된 Landsat-5와 Landsat-7영상 중에서, 대부분 지역에 활잡목 및 활엽수가 낙엽이 지고 눈이 아직 쌓이지 않을 시기인 11월에 촬영된 영상만을 이용하였다. 각 영상에서 양지바른 상록수, 활엽수, 그늘진 지역, 도시 및 바다 등을 클래스로 지정하여 감돌분류를 하였다. 분류 결과에서 양지바른 상록수만 추출하여 5개의 영상을 이진 분류체계로 조합한 후 임상의 시기적 변화 양상을 관찰한 결과, 강원대 연습림의 조림 기록 및 현황도와 상당히 일치함을 확인하였으며, Path 115, Row 34에 해당하는 강원도 일대로 연구지역을 확대하였다. 향후 Kompsat-2를 비롯한 고해상도 11월 영상이 지속적으로 촬영된다면, 이 연구에서 개발된 이진 분류체계 방법을 통하여 산림변화의 모니터링을 보다 용이하고 효율적으로 할 수 있을 것으로 기대된다.
본 연구는 산림 내 임상을 구획하기 위해 고해상도 IKONOS 위성영상을 객체 지향기반으로 분할 및 분류하였다. 영상분할 시 분광정보와 공간정보를 동시에 이용하여 모양이나 분광정보에 있어서 동질한 영역이라고 정의되는 영상객체를 생성하였다. 분할된 영상을 분류계급(class)으로 분류하기 위하여 NDVI와 경사, 방위, 고도 등 지형인자를 새로운 레이어로 추가시키고, 분류개념을 형성하기 위하여 퍼지 규칙을 사용하였다. 영상의 획득시기가 5월초인 점을 감안하여 NDVI는 0.2, 경사 $^{\circ}5^{\circ}$ 그리고 고도 130m를 기준으로 산림과 비산림지역을 분류할 수 있었고, 지형인자에 영향을 많이 받는 굴참나무와 신갈나무 또한 효율적으로 분류할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.