• Title/Summary/Keyword: 임상병리학과

Search Result 239, Processing Time 0.031 seconds

Molecular epidemiologic trends of norovirus and rotavirus infection and relation with climate factors: Cheonan, Korea, 2010-2019 (노로바이러스 및 로타바이러스 감염의 역학 및 기후요인과의 관계: 천안시, 2010-2019)

  • Oh, Eun Ju;Kim, Jang Mook;Kim, Jae Kyung
    • Journal of Digital Convergence
    • /
    • v.18 no.12
    • /
    • pp.425-434
    • /
    • 2020
  • Background: Viral infection outbreaks are emerging public health concerns. They often exhibit seasonal patterns that could be predicted by the application of big data and bioinformatic analyses. Purpose: The purpose of this study was to identify trends in diarrhea-causing viruses such as rotavirus (Gr.A), norovirus G-I, and norovirus G-II in Cheonan, Korea. The identified related factors of diarrhea-causing viruses may be used to predict their trend and prevent their infections. Method: A retrospective analysis of 4,009 fecal samples from June 2010 to December 2019 was carried out at Dankook University Hospital in Cheonan. Reverse transcription-PCR (RT-PCR) was employed to identify virus strains. Information about seasonal patterns of infection was extracted and compared with local weather data. Results: Out of the 4,009 fecal samples tested using multiplex RT-PCR (mRT-PCR), 985 were positive for infection with Gr.A, G-I, and G-II. Out of these 985 cases, 95.3% (n = 939) were under 10 years of age. Gr.A, G-I, and G-II showed high infection rates in patients under 10 years of age. Student's t-test showed a significant correlation between the detection rate of Gr.A and the relative humidity. The detection rate of G-II significantly correlated with wind-chill temperature. Conclusion: Climate factors differentially modulate rotavirus and norovirus infection patterns. These observations provide novel insights into the seasonal impact on the pathogenesis of Gr.A, G-I, and G-II.

A Study on High-acidity Rubus coreanus Concentrated Vinegar Production Using Freeze Concentration Method (동결농축법을 이용한 고산도 복분자 농축식초 제조에 관한 연구)

  • Sung, Ji-Youn;Lee, Ikheui
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.11
    • /
    • pp.419-426
    • /
    • 2021
  • Until recently, various studies for the production of high-acidity vinegar have been conducted, but there have been few studies on the concentration process of vinegar. In this study, the possibility of introducing freeze-concentration method was investigated for the production of high-quality, high-acidity vinegar. Acidity, pH, specific gravity, and glucose concentration were measured for frozen concentrated vinegar fractions obtained by freezing and thawing three types of Rubus coreanus vinegar with different acidy (7.53, 5.43, and 3.72). Acidity, specific gravity, and glucose concentration were all highest when 15% of the original vinegar was thawed. pH was the lowest when 15% of the original vinegar was melted. As a result of the measurement of cumulative acidity, when 20% of the original vinegar was melted, it was the highest at 9.32, which was 3.89 higher than that of the original vinegar. In this study, it was confirmed that vinegar can be effectively concentrated using the freeze concentration method and at the same time, the thawing ratio can be controlled to effectively obtain vinegar with the desired acidity. However, it is considered that studies such as organic acid and amino acid analysis are needed to determine whether the freeze-concentration method is introduced into the high-acidity concentrated vinegar manufacturing process.

Evaluation of Surface Dose for Field-in-Field (FIF) Technique in Breast Radiotherapy (유방암 방사선치료에서 Field-in-Field (FIF) 기법의 조사면 주변 선량 분석)

  • Il-Hoon, Cho;Daehong, Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.7
    • /
    • pp.851-856
    • /
    • 2022
  • The purpose of this study is to confirm the effect of reducing the surface dose around the radiation field in breast cancer radiotherapy using the Field-in-Field (FIF) technique. X-ray was exposed from a linear accelerator (Linac) was used for irradiation, and the surface dose was measured with a glass dosimeter. The source-to-surface distance (SSD) was 90 cm, the field size is 10 × 10 cm2, and the X-ray energy was 6 MV and 10 MV, respectively. The surface dose of the FIF was compared with the dose measured in the physical wedge (PW) and dynamic wedge (DW). Wedge angles of 15° and 30° were used in the PW and DW, respectively. Surface dose was measured at 1 cm, 3 cm, and 5 cm from the center of the field size, respectively. According to the results, FIF showed lower surface dose compared to PW and DW regardless of the energy of the X-ray beam, wedge angle, and dose measurement point. Since FIF could reduce the radiation dose in periphery of the field size in breast cancer treatment, it is expected to be able to reduce the secondary damage caused by the radiation beam as well as to obtain a uniform dose distribution on the target.

Parabiosis and Blood Exchange Techniques in Aging Research (개체병렬결합(parabiosis)실험모델과 혈액교환을 이용한 노화(aging)연구 분석)

  • Kyung Tae Chung
    • Journal of Life Science
    • /
    • v.33 no.2
    • /
    • pp.208-215
    • /
    • 2023
  • In recent decades, the field of aging research has progressed from the genetic and cellular levels to in vivo models of blood exchange. Since genes capable of extending the lifespan in C. elegance have been reported, various potential target molecules have been discovered through genomics, proteomics, metabolomics, and transcriptomics. Accordingly, research on the interactions between target molecules has also been increasing. The parabiosis method, in which two experimental animals are surgically combined, was introduced, and a factor that could reverse the aging phenomenon was discovered using this method. The parabiosis method is used to find more accurate and effective aging-reversal factors that could exist in young blood. As more new evidence has been revealed, the parabiosis method has established a new paradigm for aging research. Moreover, a device capable of exchanging blood elaborately in laboratory animals was published in 2022 and presented new results necessary for aging reversal. Since GDF11, was reported, many other anti-aging candidates that are soluble factors in blood, such as β2m, TIMP2, VCAM1, Gpld1, and clusterin, have been discovered. In addition, mcicroglia cells and neuroinflammation have been directly proven to be aging factors. These latest research results were obtained by parabiosis, the newly designed device for plasmapheresis, and injecting young blood or conditioned blood methods. In this review, we discuss the latest research results using the device and young blood administration in old mice.

Anti-Oxidative Effects of Cymbopoton Citratus Ethanol Extract through the Induction of HO-1 Expression in RAW 264.7 Cells (RAW264.7 세포에서 Cymbopogon Citratus 에탄올 추출물의 HO-1 유도를 통한 항산화 효과)

  • Chung-Mu Park;Hyun-Seo Yoon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.4
    • /
    • pp.73-82
    • /
    • 2023
  • Purpose : Cymbopogon citratus, also known as lemongrass, has widely spread around the world and its essential oil is usually applied in food, perfume, and other industrial purposes. In addition, C. citratus has also been used for the treatment of inflammation, digestive disorders, and diabetes in traditional medicine. In this study, the antioxidative activity of C. citratus ethanol extract (CCEE) was analyzed in RAW 264.7 cells through the induction of one of phase II enzymes, heme oxygenase (HO)-1 by nuclear factor-erythroid 2 p45-related factor (Nrf)2, mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K)/Akt. Methods : The antioxidative activity of CCEE against oxidative stress and its underlying molecular mechanisms were analyzed by the cell viability assay, intracellular reactive oxygen species (ROS) formation assay, and Western blot analysis in RAW 264.7 cells. Results : The results exhibited that CCEE potently attenuated tert-butyl hydroperoxide (t-BHP) induced intracellular ROS levels in a dose-dependent manner without any cytotoxicity. CCEE treatment significantly induced the expression of HO-1 which is known for its antioxidative capacity. In addition, CCEE treatment significantly upregulated the expression of Nrf2, a corresponding transcription factor for the regulation of antioxidative enzymes, which was in accordance with the HO-1 overexpression. MAPK and PI3K/Akt were also evaluated for their important roles in the regulation of cellular redox homeostasis against oxidative damage. As a result, the potent HO-1 expression was mediated by not extracellular regulated kinase (ERK), c-Jun NH2 terminal kinase (JNK), p38, but phosphoinositide 3-kinase (PI3K) phosphorylation. To confirm the antioxidative activity of CCEE-induced HO-1 expression, oxidative damage was initiated by t-BHP and attenuated by CCEE treatment, which was identified by HO-1 selective inhibitor and inducer. Conclusion : Consequently, CCEE potently induced the HO-1-mediated antioxidative potential through the modulation of Nrf2 and PI3K/Akt signaling pathways in RAW 264.7 cells. These results suggest that CCEE could be a promising strategy for the mitigation against cellular oxidative damage.

Ameliorative Effect of Persicaria Poliata Etract through the Rgulation of AP-1, PI3K/Akt and MAPK Sgnaling Mlecules in UVB-Iradiated HaCaT Clls (HaCaT 세포에서 며느리 배꼽 추출물의 AP-1, PI3K/Akt 및 MAPK 활성 조절을 통한 광손상 억제 효과)

  • Hyun-Seo Yoon;Chung-Mu Park
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.12 no.1
    • /
    • pp.63-71
    • /
    • 2024
  • Purpose : Skin is the primary barrier to protect the body from various exogenous factors. Among them, UVB exposure can cause the induction of not only excessive inflammatory responses but also the degradation of extracellular matrix (ECM), including collagen and elastin. This study tried to investigate the ameliorative effect of Persicaria perfoliata ethanol extract (PPEE) on UVB-irradiated photodamage through the regulation of activator protein (AP)-1, phosphoinositide 3-kinase (PI3K)/Akt, and mitogen-activated protein kinase (MAPK) signaling molecules in HaCaT cells. Methods : The cytotoxicity of PPEE on HaCaT cells was evaluated by the WST-1 assay. The 80 mJ/cm2 of UVB (312 nm) was irradiated on HaCaT cells to induce the photodamage. Western blot analysis was conducted to investigate the protein expression levels of cyclooxygenase (COX)-2, matrix metalloproteinase (MMP)-9, and heme oxygenase (HO)-1 for ameliorative status by PPEE treatment in UVB-exposed HaCaT cells. In addition, the activated status of the inflammatory transcription factor, AP-1, as well as upstream signaling molecules, PI3K/Akt, and MAPK, were also evaluated by Western blot analysis. Results : Any cytotoxic effect was not induced at the concentration up to 200 ㎍/ml by PPEE treatment. Protein expression levels of COX-2 and MMP-9 were significantly down- and up-regulated by PPEE treatment. The inflammatory transcription factor AP-1, stimulated by UVB irradiation, was also significantly attenuated by PPEE treatment. The phosphorylated status of PI3K/Akt and MAPK were mitigated by PPEE treatment in UVB-exposed HaCaT cells. Moreover, PPEE treatment potently accelerated the expression of HO-1 and its transcription factor, nuclear factor-erythroid 2-related factor (Nrf)2, which is known for its anti-inflammatory activity. Conclusion : Consequently, PPEE treatment significantly regulated COX-2 and MMP-9 expressions in UVB-irradiated HaCaT cells. The inflammatory transcription factor AP-1, along with upstream signaling molecules PI3K/Akt and MAPKs, were also attenuated by PPEE treatment in UVB-exposed HaCaT cells. Additionally, PPEE treatment exaggerated HO-1 expression and Nrf2 activation, which might have contributed to the anti-inflammatory activity of PPEE. These results indicate that PPEE could be a candidate for attenuating UVB-induced photodamage in human skin.

Adoption and Efficacy of ISO 15189 in Medical Laboratories for Diagnostic and Research (메디컬시험기관에서 ISO 15189 도입의 필요성과 시행의 효용성)

  • Yang, Man-Gil;Lee, Won Ho;Jun, Jin Hyun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.2
    • /
    • pp.158-167
    • /
    • 2016
  • The requirements for medical laboratories ISO 15189 is examined in organization and a quality management system, stressing the importance of evidence, document control, and control of records and clinical material. Medical services are provided from the areas of resource management, and pre-examination, examination and post-examination processes. The main goal of ISO 15189 accreditation is to improve the quality of laboratory services provided for patients and clinical users not only through compliance with consensually developed and harmonized requirements but also by adopting the philosophy of continual improvement using the Plan-Do-Check-Act cycle. Laboratory quality should be evaluated and improved in all steps of the testing process as the state-of-the art indicates that the pre- and post-analytical phases are more vulnerable to errors than the intra-analytical phase. The Korea Laboratory Accreditation Scheme (KOLAS), a national accreditation body, provides medical laboratory accreditations for appropriate approaches to evaluating the competence of a medical laboratory in providing effective services to its customers and clinical users. Adoption of ISO 15189 in 2010s as a government policy has been delayed, and only 5 laboratories have been accredited to date in Korea. The medical laboratories should seek the adoption of ISO 15189 with a positive attitude for quality improvement and strengthening of international competitiveness.

Anti-microbial Activity Effects of Ozonized Olive Oil Against Bacteria and Candida albicans (오존화 올리브 오일의 세균과 Candida alicans에 대한 항미생물 활성 효과)

  • Chung, Kyung Tae;Kim, Byoung Woo
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.223-230
    • /
    • 2019
  • Ozone is a gaseous molecule able to kill microorganisms, such as yeast, fungi, bacteria, and protozoa. However, ozone gas is unstable and cannot be used easily. In order to utilize ozone properly and efficiently, plant oil can be employed. Ozone reacts with C-C double bonds of fatty acids, converting to ozonized oil. In this reaction, ozonide is produced within fatty acids and the resulting ozonized oil has various biological functions. In this study, we showed that ozonized oil has antimicrobial activity against fungi and bacteria. To test the antimicrobial activity of ozonized oil, we produced ozonized olive oil. Ozonized olive oil was applied to Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. Antimicrobial activity was assayed using the disk diffusion method following the National Committee for Clinical Laboratory Standards. Minimal inhibitory concentrations (MIC) were 0.25 mg for S. aureus, 0.5 mg for S. epidermidis, 3.0 mg for P. aeruginosa, and 1.0 mg for E. coli. Gram positive bacteria were more susceptible than Gram negative bacteria. We compared growth inhibition zones against S. aureus and MRSA, showing that the ozonized olive oil was more effective on MRSA than S. aureus. Furthermore, the ozonized olive oil killed C. albicans within an hour. These data suggested that ozonized olive oil could be an alternative drug for MRSA infection and could be utilized as a potent antimicrobial and antifungal substance.

Biomarkers for Canine Mammary Tumors (반려견 유선종양 바이오 마커)

  • Chan-Ho Lee;Young Sun Choi;Suk Jun Lee;Sung-Hak Kim
    • Journal of Life Science
    • /
    • v.34 no.6
    • /
    • pp.434-441
    • /
    • 2024
  • Mammary gland tumors are the most common tumors detected in non-spayed female dogs and pose a significant clinical challenge. Due to the strong similarity between canine mammary tumors (CMT) and human breast cancer (HBC), biomarkers identified in HBC can also be detected in CMT. These biomarkers have been shown to offer valuable insights into early diagnosis, prognosis, and treatment strategies. The purpose of this article is to provide a concise overview of CMT biomarkers based on the current literature. Traditional treatments for CMT in dogs typically begin with surgery, followed by chemotherapy, radiotherapy, or hormonal therapy. However, these treatments alone are not always fully effective. A diagnostic biomarker can detect the presence of a disease or the characteristics of a disease and classify an individual's status. Prognostic biomarkers focus on predicting the expected progression, recurrence, or survival of the disease in patients. By utilizing advances in understanding the mechanism of canine-specific mammary gland tumors, the estimation of biomarkers offers hope for improved outcomes in cancer patients. Novel technologies, such as single-cell RNA sequencing analysis, could provide a valuable resource for deciphering intra- and inter-tumoral heterogeneity. This review paper explores current research on CMT biomarkers and suggests directions for their development.

Frequency of Candida Strains Isolated from Candidiasis Patients at A Tertiary Hospital over the Last 10 Years (최근 10년 동안 일개 상급종합병원의 칸디다혈증 환자에서 분리된 칸디다 균종의 빈도)

  • Hwang, Yu-Yean;Kang, On-Kyun;Park, Chang-Eun;Hong, Sung-No;Kim, Young-Kwon;Huh, Hee-Jae;Lee, Nam-Yong
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.2
    • /
    • pp.110-118
    • /
    • 2022
  • Candidemia is a major cause of nosocomial infections resulting in increased morbidity and mortality. It remains a serious risk in inpatients and increases medical treatment costs. From 2009 to 2018, Candida strains (3,533) isolated from blood culture tests at the S Hospital were analyzed according to the period, year, sex, age, ward, etc. During the entire period, 54,739 of 717,996 blood culture tests showed a positive rate (7.6%) and the Candida isolation rate was 3,533 (6.4%) out of 1,036 patients. Among the Candida isolates, C. albicans was most common (33.8%), followed by C. tropicalis (28.6%), C. glabrata (19.8%), C. parapsilosis (7.8%), and C. krusei (4.0%). In early (2009~2013)/late (2014~2018) isolation, C. tropicalis decreased by 3.8% and C. glabrata increased by 3.4%. After 50 years of age, the higher the separation frequency. C. parapsilosis (31.3%) in 1~10s, C. tropicalis (30.3%) and C. glabrata (27.6%) in 41~50s, and C. tropicalis (28.6%) in 80s are relatively frequent. has been separated C. krusei was isolated in a relatively high proportion from females (60.9%). Therefore, a systematic and continuous nosocomial infection control system should be established for appropriate treatment as per antifungal treatment guidelines. The system should continuously monitor the distribution of Candida species and provide rapid identification results.