• Title/Summary/Keyword: 일별평균기온

Search Result 37, Processing Time 0.021 seconds

기후변화의 위험헷지와 기온파생상품

  • Son, Dong-Hui;Im, Hyeong-Jun;Jeon, Yong-Il
    • Environmental and Resource Economics Review
    • /
    • v.21 no.3
    • /
    • pp.465-491
    • /
    • 2012
  • Climate change, a result of increasing global warming, has been receiving more public attention due to its serious impact upon many industries. In this study we consider sustainable- (Green-) Growth and Green-Finance, and in particular temperature derivatives, as appropriately active responses to the world's significant climate change trends. We characterize the daily average temperatures in Seoul, South Korea with their seasonal properties and cycles of error terms. We form forecasting models and perform Monte Carlo simulations, and find that the risk-neutral values for CDD call-options and HDD put-options have risen since 1960s, which implies that the trend of temperature increase can be quantified in the financial markets. Contrary to the existing models, the Vasicek model with the explicit consideration of cycles in the error terms suggests that the significant option-values for the CDD call -options above certain exercise prices, implying that there is the possibility of explicit hedging against the considerable and stable increase in temperature.

  • PDF

Reliability of the Agro-climatic Atlases Based on the 30-Year Average Climate Data (평년 평균기후자료 기반 농업기후도의 신뢰도)

  • Kim, Jin-Hee;Kim, Dae-jun;Kim, Soo-ock
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.3
    • /
    • pp.110-119
    • /
    • 2017
  • The agroclimatic indices are produced by statistical analysis based on primary climate data (e.g., temperature, precipitation, and solar irradiance) or driving agronomic models. This study was carried out to evaluate how selection of daily temperature for a climate normal (1983-2012) affected the precision of the agroclimatic indices. As a first step, averaged daily 0600 and 1500 LST temperature for a climate normal were produced by geospatial schemes based on topo-climatology ($365days{\times}1$ set, EST normal year). For comparison, 30 years daily temperature data were generated by applying the same process ($365days{\times}30sets$), and calculated mean of daily temperature (OBS normal year). The flowering date of apple 'Fuji' cultivar, the last frost date, and the risk of late frost were estimated based on EST normal year data and compared with the results from OBS normal year. The results on flowering date showed 2.9 days of error on average. The last frost date was of 11.4 days of error on average, which was relatively large. Additionally, the risk of the late frost was determined by the difference between the flowering and the last frost date. When it was determined based on the temperature of EST normal year, Akyang was classified as a risk area because the results showed that the last frost date would be the same or later than the flowering date in the 12.5% of area. However, the temperature of OBS normal year indicated that the area did not have the risk of a late frost. The results of this study implied that it would be necessary to reduce the error by replacing the EST method with the OBS method in the future.

Seasonal Trend of Elevation Effect on Daily Air Temperature in Korea (일별 국지기온 결정에 미치는 관측지점 표고영향의 계절변동)

  • 윤진일;최재연;안재훈
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.2
    • /
    • pp.96-104
    • /
    • 2001
  • Usage of ecosystem models has been extended to landscape scales for understanding the effects of environmental factors on natural and agro-ecosystems and for serving as their management decision tools. Accurate prediction of spatial variation in daily temperature is required for most ecosystem models to be applied to landscape scales. There are relatively few empirical evaluations of landscape-scale temperature prediction techniques in mountainous terrain such as Korean Peninsula. We derived a periodic function of seasonal lapse rate fluctuation from analysis of elevation effects on daily temperatures. Observed daily maximum and minimum temperature data at 63 standard stations in 1999 were regressed to the latitude, longitude, distance from the nearest coastline and altitude of the stations, and the optimum models with $r^2$ of 0.65 and above were selected. Partial regression coefficients for the altitude variable were plotted against day of year, and a numerical formula was determined for simulating the seasonal trend of daily lapse rate, i.e., partial regression coefficients. The formula in conjunction with an inverse distance weighted interpolation scheme was applied to predict daily temperatures at 267 sites, where observation data are available, on randomly selected dates for winter, spring and summer in 2000. The estimation errors were smaller and more consistent than the inverse distance weighting plus mean annual lapse rate scheme. We conclude that this method is simple and accurate enough to be used as an operational temperature interpolation scheme at landscape scale in Korea and should be applicable to elsewhere.

  • PDF

The research on daily temperature using continuous AR model (일별 온도의 연속형 자기회귀모형 연구 - 6개 광역시를 중심으로 -)

  • Kim, Ji Young;Jeong, Kiho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.155-167
    • /
    • 2014
  • This study uses a continuous autoregressive (CAR) model to analyze daily average temperature in six Korean metropolitan cities. Data period is Jan. 1, 1954 to Dec. 31, 2010 covering 57 years. Using a relative long time series reveals that the linear time trend components are all statistically significant in the six cities, which was not shown in previous studies. Particularly the plus sign of its coefficient implies the effect on Korea of the global warming. Unit-root test results are that the temperature time series are stationary without unit-root. It turns out that CAR(3) is suitable for stochastic component of the daily temperature. Since developing suitable continuous stochastic model of the underlying weather related variables is crucial in pricing the weather derivatives, the results in this study will likely prove useful in further future studies on pricing weather derivatives.

Generating high resolution of daily mean temperature using statistical models (통계적모형을 통한 고해상도 일별 평균기온 산정)

  • Yoon, Sanghoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1215-1224
    • /
    • 2016
  • Climate information of the high resolution grid units is an important factor to explain the phenomenon in a variety of research field. Statistical linear interpolation models are computationally inexpensive and applicable to any climate data compared to the dynamic simulation method at regional scales. In this paper, we considered four different linear-based statistical interpolation models: general linear model, generalized additive model, spatial linear regression model, and Bayesian spatial linear regression model. The climate variable of interest was the daily mean temperature, where the spatial variability was explained using geographic terrain information: latitude, longitude, elevation. The data were collected by weather stations in January from 2003 and 2012. In the sense of RMSE and correlation coefficient, Bayesian spatial linear regression model showed better performance in reflecting the spatial pattern compared to the other models.

Influences of Temperature Change Rates and Impervious Surfaces on the Intra-City Climatic Patterns of Busan Metropolitan Area (부산광역시 국지적 기후 패턴에 대한 기온변화율과 불투수면의 영향)

  • PARK, Sun-Yurp
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.199-217
    • /
    • 2016
  • Influences of seasonal warming and cooling rates on the annual temperature patterns were analyzed based on the meteorological data from 13 weather stations in Busan Metropolitan Area(BMA), Korea during 1997~2014. BMA daily temperature time-series was generalized by Fourier analysis, which mathematically summarizes complex, regularly sampled periodic records, such as air temperature, into a limited number of major wave components. Local monthly warming and cooling rates of BMA were strongly governed by the ocean effect within the city. March($1.121^{\circ}C/month$) and November(-$1.564^{\circ}C/month$) were the two months, when the most rapid warming and cooling rates were observed, respectively during the study period. Geographically, spring warming rates of inland increased more rapidly compared to coastal areas due to weaker ocean effect. As a result, the annual maximum temperature was reached earlier in a location, where the annual temperature range was larger, and therefore its July mean temperature and continentality were higher. Interannual analyses based on average temperature data of all weather stations also showed that the annual maximum temperature tended to occur earlier as the city's July mean temperature increased. Percent area of impervious surfaces, an indicator of urbanization, was another contributor to temperature change rates of the city. Annual mean temperature was positively correlated with percent area of impervious surfaces, and the variations of monthly warming and cooling rates also increased with percent area of impervious surfaces.

Correlation Analysis between Terra/Aqua MODIS LST and Air Temperature: Mainly on the Occurrence Period of Heat and Cold Waves (Terra/Aqua MODIS LST와 기온과의 상관성 분석: 한파 및 폭염 발생 기간을 중심으로)

  • CHUNG, Jee-Hun;LEE, Yong-Gwan;LEE, Ji-Wan;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.197-214
    • /
    • 2019
  • In this study, the correlation analysis was conducted between observed air temperature (maximum, minimum, and mean air temperature) and the daytime and nighttime data of Terra/Aqua MODIS LST(Moderate Resolution Imaging Spectroradiometer Land Surface Temperature) for 86 weather stations. All the data of the recent 11 years from 2008 to 2018 were prepared with daily base. In particular, the characteristics of the cold and heat waves incidence period in 2018 were analyzed. The correlation analysis was performed using the Pearson correlation coefficient(R) and root mean square error(RMSE). As a result of time series analysis, the trend between observed air temperature and MODIS LST were similar, showing the correlation above 0.9 in maximum temperature, above 0.8 in mean and minimum temperature. Especially, the maximum temperature was found to have the highest accuracy with Terra MODIS LST daytime, and the minimum temperature had the highest correlation with Terra MODIS LST nighttime. During the cold wave period, both Terra and Aqua MODIS LST showed higher correlations with nighttime data than daytime data. For the heat wave period, the Aqua MODIS LST daytime data was good, but the overall R was below 0.5. Additional analysis is necessary for further study considering such as land cover and elevation characteristics.

Azimuthal Distribution of Daily Maximum Temperatures Observed at Sideslopes of a Grass-covered Inactive Parasitic Volcano ("Ohreum") in Jeju Island (제주도 초지피복 기생화산("오름")의 방위별 일 최고기온 분포)

  • Seo, Hee-Chul;Jeon, Seung-Jong;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.1
    • /
    • pp.25-31
    • /
    • 2008
  • Information on daily maximum air temperature is important in predicting the status of plants and insects, but the uneven and sparse distribution of weather stations prohibits timely access to the data in regions with complex topography. Since cumulative solar irradiance plays a critical role in determining daily maximum temperature on any sloping surfaces, derivation of a quantitative relationship between cumulative solar irradiance and the resultant daily maximum temperature is a prerequisite to development of such estimation models. Air temperatures at 8 sideslope locations with similar elevation and slope angle but aspect, circumventing a cone-shaped, grass-covered parasitic volcano (c.a., 570 m diameter for the bottom circle and 90m bottom-to-top height), were measured from June to December in 2007. Daily maximum temperatures from each location were compared with the average of 8 locations (assumed to be the temperature measured at a "horizontal reference" position). The temperature deviation at all locations increased with the day of year (or sun elevation) from summer solstice to winter solstice. Averaged over the entire period, the south facing location was warmer by $1^{\circ}C$ in daily maximum temperature than "horizontal reference" and the north facing location was cooler by $0.8^{\circ}C$ than the reference, resulting in the year round average south-north temperature difference of $1.8^{\circ}C$. In November, both south and north facing slopes showed the greatest deviation of $+2.0^{\circ}C$ and $-1.3^{\circ}C$, respectively in daily maximum temperature at monthly scale. On a daily scale, the greatest deviation was +3.8 and $2.7^{\circ}C$ at the south and north slope, respectively. The cumulative solar irradiance (on the slope for 4 hours from 11:00 to 15:00 TST) explained >60% of the variance in daily maximum temperature deviations among 8 locations, suggesting a feasibility of developing an estimation model for daily maximum temperature over complex topography at landscape scales.

Future Weather Generation with Spatio-Temporal Correlation for the Four Major River Basins in South Korea (시공간 상관성을 고려한 일기산출기 모형을 이용한 4대강 유역별 미래 일기 변수 산출)

  • Lee, Dong-Hwan;Lee, Jae-Yong;Oh, Hee-Seok;Lee, Young-Jo
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.2
    • /
    • pp.351-362
    • /
    • 2012
  • Weather generators are statistical tools to produce synthetic sequences of daily weather variables. We propose the multisite weather generators with a spatio-temporal correlation based on hierarchical generalized linear models. We develop a computational algorithm to produce future weather variables that use three different types of green-house gases scenarios. We apply the proposed method to a daily time series of precipitation and average temperature for South Korea.

A Geospatial Evaluation of Potential Sea Effects on Observed Air Temperature (해안지대 기온에 미치는 바다효과의 공간분석)

  • Kim, Soo-Ock;Yun, Jin-I.;Chung, U-Ran;Hwang, Kyu-Hong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.217-224
    • /
    • 2010
  • This study was carried out to quantify potential effects of the surrounding ocean on the observed air temperature at coastal weather stations in the Korean Peninsula. Daily maximum and minimum temperature data for 2001-2009 were collected from 66 Korea Meteorological Administration (KMA) stations and the monthly averages were calculated for further analyses. Monthly data from 27 inland sites were used to generate a gridded temperature surface for the whole Peninsula based on an inverse distance weighting and the local temperature at the remaining 39 sites were estimated by recent techniques in geospatial climatology which are widely used in correction of small - scale climate controls like cold air drainage, urban heat island, topography as well as elevation. Deviations from the observed temperature were regarded as the 'apparent' sea effect and showed a quasi-logarithmic relationship with the distance of each site from the nearest coastline. Potential effects of the sea on daily temperature might exceed $6.0^{\circ}C$ cooling in summer and $6.5^{\circ}C$ warming in winter according to this relationship. We classified 25 sites within the 10 km distance from the nearest coastline into 'coastal sites' and the remaining 15 'fringe sites'. When the average deviations of the fringe sites ($0.5^{\circ}C$ for daily maximum and $1.0^{\circ}C$ for daily minimum temperature) were used as the 'noise' and subtracted from the 'apparent' sea effects of the coastal sites, maximum cooling effects of the sea were identified as $1.5^{\circ}C$ on the west coast and $3.0^{\circ}C$ on the east and the south coast in summer months. The warming effects of the sea in winter ranged from $1.0^{\circ}C$ on the west and $3.5^{\circ}C$ on the south and east coasts.