DOI QR코드

DOI QR Code

Influences of Temperature Change Rates and Impervious Surfaces on the Intra-City Climatic Patterns of Busan Metropolitan Area

부산광역시 국지적 기후 패턴에 대한 기온변화율과 불투수면의 영향

  • PARK, Sun-Yurp (Department of Geography Education, Pusan National University)
  • Received : 2016.11.21
  • Accepted : 2016.12.21
  • Published : 2016.12.31

Abstract

Influences of seasonal warming and cooling rates on the annual temperature patterns were analyzed based on the meteorological data from 13 weather stations in Busan Metropolitan Area(BMA), Korea during 1997~2014. BMA daily temperature time-series was generalized by Fourier analysis, which mathematically summarizes complex, regularly sampled periodic records, such as air temperature, into a limited number of major wave components. Local monthly warming and cooling rates of BMA were strongly governed by the ocean effect within the city. March($1.121^{\circ}C/month$) and November(-$1.564^{\circ}C/month$) were the two months, when the most rapid warming and cooling rates were observed, respectively during the study period. Geographically, spring warming rates of inland increased more rapidly compared to coastal areas due to weaker ocean effect. As a result, the annual maximum temperature was reached earlier in a location, where the annual temperature range was larger, and therefore its July mean temperature and continentality were higher. Interannual analyses based on average temperature data of all weather stations also showed that the annual maximum temperature tended to occur earlier as the city's July mean temperature increased. Percent area of impervious surfaces, an indicator of urbanization, was another contributor to temperature change rates of the city. Annual mean temperature was positively correlated with percent area of impervious surfaces, and the variations of monthly warming and cooling rates also increased with percent area of impervious surfaces.

본 연구는 부산광역시 13개 기상관측지점을 대상으로 1997~2014년 동안의 기온상승율과 하강율의 계절적 특성이 연간 기온변화 특징에 미치는 영향을 분석하였다. 일별 기온 자료를 시계열적으로 단순화하기 위해 푸리에분석법을 적용하였는데, 이는 기상 자료와 같이 연속적으로 수집되는 시계열자료를 몇 개의 한정된 주요 파형으로 환원하여 자료를 단순화하는 수학적 기법이다. 부산광역시의 국지적 기온변화율은 대륙도에 의해 공간적으로 큰 영향을 받는 것으로 조사되었다. 계절적으로는 3월에 가장 높은 기온상승율(평균 $1.121^{\circ}C/month$)을 보였고, 11월에 가장 가파른 기온하강율(평균 -$1.564^{\circ}C/month$)을 나타냈다. 지역적으로 최난월인 8월 평균기온에 지배적인 영향을 주는 7월 평균기온상승율과 대륙도가 높은 지역일수록 최난일이 일찍 출현한 것으로 보아, 해양의 영향이 적은 지역일수록 기온상승률이 높고 해양 인접 지역에 비해 연중최고기온에 도달하는 시기가 앞당겨지는 것으로 분석되었다. 연구 지역 관측 지점 전체를 평균한 연도별 분석 결과도 7월 평균기온이 높은 해일수록 최난일 출현은 시기적으로 앞당겨지는 경향을 나타냈다. 도시화 정도를 나타내는 불투수면의 면적 비율 역시 기온의 연 변화와 통계적으로 상관관계를 갖는 것으로 나타났다. 관측지점의 불투수면 면적비율이 증가할수록 연평균기온이 높게 나타났고, 연평균 기온상승율과 하강율의 장기적 변동 폭도 크게 나타났다.

Keywords

References

  1. Ahn, J.S., J.D. Hwang, M.H. Park, and Y.S. Suh. 2012. Estimation of urban heat island potential based on land cover type in Busan using Landsat-7 ETM+ and AWS Data. Journal of the Korean Association of Geographic Information Studies 15(4):65-77 (안지숙, 황재동, 박명희, 서영상. 2012. Landsat-7 ETM+ 영상과 AWS 자료를 이용한 부산의 토지피복에 따른 여름철 도시열섬포텐셜 산출. 한국지리정보학회지 15(4):65-77). https://doi.org/10.11108/kagis.2012.15.4.065
  2. Andres, L., W.A. Salas, and D. Skole. 1994. Fourier analysis of multi-temporal AVHRR data applied to a land cover classification. International Journal of Remote Sensing 15(5):1115-1121. https://doi.org/10.1080/01431169408954145
  3. Azzali, S. and M. Menenti. 2000. Mapping vegetation-soil-climate complexes in southern Africa using temporal Fourier analysis using NOAA-AVHRR-NDVI data. International Journal of Remote Sensing 21(5):973-996. https://doi.org/10.1080/014311600210380
  4. BDI (Busan Development Institute). 2010. Urban biotope mapping of the central region, Busan. Busan Metropolitan City.
  5. Bierwagen, B.G., D.M. Theobald, C.R. Pyke, A. Choate, P. Groth, J.V. Thomas, and P. Morefield. 2010. National housing and impervious surface scenarios for integrated climate impact assessments. Proceedings of the National Academy of Sciences 107(49):20887-20892.
  6. Brabec, E., S. Schulte, and P.L. Richards. 2002. Impervious surfaces and water quality: a review of current literature and its implications for watershed planning. Journal of Planning Literature 16(4):499-514. https://doi.org/10.1177/088541202400903563
  7. Cheng, Q., Z.W. Yan, and C.B. Fu. 2012. Climatic changes in the twenty-four solar terms during 1960-2008. Atmospheric Science 57(2-3):276-286.
  8. Choi, G.Y., W.T Kwon, K.O. Boo, and Y.M. Cha. 2008. Recent spatial and temporal changes in means and extreme events of temperature and precipitation across the Republic of Korea. Journal of Korean Geographical Society 43(5):681-700 (최광용, 권원태, 부경온, 차유미. 2008. 최근 우리나라 기온 및 강수 평균과 극한 사상의 시.공간적 변화. 대한지리학회지 43(5):681-700).
  9. Choi, Y.E. 2004. Trends on temperature and precipitation extreme events in Korea. Journal of Korean Geographical Society 39(5):711-721 (최영은. 2004. 한국의 극한 기온 및 강수 사상의 변화 경향에 관한 연구. 대한지리학회지 39(5):711-721).
  10. Choi, G.Y., W.T. Kwon, and D.A. Robinson. 2006. Seasonal onset and duration in South Korea. Journal of Korean Geographical Society 41(4):681-700 (최광용, 권원태, D. A. Robinson. 2006. 우리나라 사계절의 개시일과 지속기간. 대한지리학회지 41(4):435-456).
  11. Coutts, A.M., J. Beringer, and N.J. Tapper. 2007. Impact of increasing urban density on local climate: spatial and temporal variations in the surface energy balance in Melbourne, Australia. American Meteorological Society 46(4):477-493.
  12. Davis, J.C. 2002. Statistics and Data Analysis in Geology. John Wiley & Sons, Inc., New York, USA. p.268.
  13. Deng, X., C.C. Zhao, and H. Yan. 2013. Systematic modeling of impacts of land use and land cover changes on regional climate: a review. Advances in Meteorology Volume 2013, Article ID 317678, http://dx.doi.org/10.1155/2013/ 317678.
  14. Feddema, J.J., K.W. Oleson, G.B. Bonan, L.O. Mearns, L.E. Buja, G.A. Meehl, and W.M. Washington. 2005. The importance of land-cover change in simulating future climates. Science 310(5754):1674-1678. https://doi.org/10.1126/science.1118160
  15. Hidore, J., J. Oliver, M. Snow, and R. Snow. 2010. Climatology-an Atmospheric Science. Prentice Hall, New York, USA. 293pp.
  16. Hong, S.K. and C.S. Lee. 1997. Development and roles of landscape ecology as an emerging opportunity for ecology. The Korean Journal of Ecological Sciences 20(3):217-227 (홍선기, 이창석. 1997. 생태학의 새로운 분야로서 경관생태학의 발전과 역할. 한국생태학회지 20(3):217-227).
  17. IPCC (Intergovernmental Panel on Climate Change). 2013. Climate Change 2013: The Physical Science Basis. In: Stocker, T.F., D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley (ed.). Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, USA.
  18. Jakubauskas, M.E., D.R. Legates, and J.H. Kastens. 2001. Harmonic analysis of time-series AVHRR NDVI data. Photogrammetric Engineering and Remote Sensing 67(4):461-470.
  19. Jennings, D.B. and S.T. Jarnagin. 2002. Changes in anthropogenic impervious surfaces, precipitation and daily streamflow discharge: a historical perspective in a mid-atlantic subwatershed. Landscape Ecology 17(5):471-489. https://doi.org/10.1023/A:1021211114125
  20. Jeong, S.J., C.H. Ho, K.Y. Kim, and J.H. Jeong. 2009. Reduction of spring warming over East Asia associated with vegetation feedback. Geophysical Research Letters 36 L18705, doi:10.1029/2009GL039114.
  21. Jin, M.J. and S.Y. Park. 2015. Temperature changes of climatic solar terms and their spatiotemporal characteristics in South Korea. Journal of the Korean Geographical Society 50(1):23-36 (진미정, 박선엽. 2015. 우리나라 기후 절기별 기온 변화의 시공간적 특성 분석. 대한지리학회지 50(1):23-36).
  22. Jung, H.S., Y.E. Choi, J.H. Oh, and G.H. Lim. 2002. Recent trends in temperature and precipitation over South Korea. International Journal of Climatology 22(11):1327-1337. https://doi.org/10.1002/joc.797
  23. Jung, S.K., J.H. Oh, and K.H. Park. 2005. A temporal structure analysis of forest landscape patterns using landscape indices in the Nakdong River Basin. Journal of the Korean Association of Geographic Information Studies 8(2):145-156 (정성관, 오정학, 박경훈. 2005. 경관지수를 활용한 낙동강 유역 산림경관의 시계 열적 패턴 분석. 한국지리정보학회지 8(2):145-156).
  24. Kang, Y.Q. and Y.S. Suh. 1986. Relationships between air temperature and sea surface temperature anomalies in Korea. Journal of Korean Meteorological Society 22(3):7-13.
  25. Kim, H.S., H.B. Seok, and Y.K. Kim. 2014. A study on the change of the urban heat island structure in Busan metropolitan area, Korea. Journal of Environmental Science International 23(11):1807-1820 (김현수, 석현배, 김유근. 2014. 부산지역의 도시열섬 구조 변화에 관한 연구. 한국환경과학회지 23(11):1807-1820). https://doi.org/10.5322/JESI.2014.23.11.1807
  26. Kim, Y.J., H.S. Kim, Y.K. Kim, J.K. Kim, and Y.M. Kim. 2014. Evaluation of thermal environments during the heat waves of summer 2013 in Busan metropolitan area. Journal of Environmental Science International 23(11):1929-1941 (김영준, 김현수, 김유근, 김진국, 김영매. 2014. 2013년 부산지역 폭염사례일의 열쾌적성 평가. 한국환경과학회지 23(11):1929-1941). https://doi.org/10.5322/JESI.2014.23.11.1929
  27. Kondoh, A. and J. Nishiyama. 2000. Changes in hydrological cycle due to urbanization in the suburban of Tokyo metropolitan area, Japan. Advances in Space Research 26(7):1173-1176. https://doi.org/10.1016/S0273-1177(99)01143-6
  28. Kwon, Y.A. W.T. Kwon, K.O Boo, and Y.E. Choi. 2007. Future projections on subtropical climate regions over South Korea using SRES A1B data. Journal of Korean Geographical Society 42(3):355-367 (권영아, 권원태, 부경온, 최경은. 2007. A1B 시나리오 자료를 이용한 우리나라 아열대 기후구 전망. 대한지리학회지 42(3):355-367).
  29. Lee, W.J., M.K. Hwang, and Y.K. Kim. 2014. Health vulnerability assessment for PM10 in Busan. Journal of Environmental health Sciences 40(5):355-366 (이원정, 황미경, 김유근. 2014. 부산지역 미세먼지에 대한 건강 취약성 평가. 한국환경보건학회지 40(5): 355-366). https://doi.org/10.5668/JEHS.2014.40.5.355
  30. Lee, W.J. and M.K. Lee. 2016. Interannual variability of heat waves in South Korea and their connection with large-scale atmospheric circulation patterns. International Journal of Climatology 36(15):4815-4830. https://doi.org/10.1002/joc.4671
  31. NIMS (National Institute of Meteorological Sciences). 2010. Understanding climate change . V. Korea Meteorological Administration (국립기상연구소. 2010. 기후변화 이해하기. V. 기상청).
  32. Olsson L. and L. Eklundh. 1994. Fourier series for analysis of temporal sequences of satellite sensor imagery. International Journal of Remote Sensing 15(18):3735-3741. https://doi.org/10.1080/01431169408954355
  33. Owen, T.W., T.N. Carlson, and R.R. Gillies. 1998. An assessment of satellitesensed land cover parameters in quantitatively describing the climatic effect of urbanization. International Journal of Remote Sensing 19(9):1663-1681. https://doi.org/10.1080/014311698215171
  34. Park, B.I. 2011. The change of seasonal trend appeared in wintertime daily mean temperature of Seoul, Korea. Journal of Korean Geographical Society 46(2):152-167 (박병익. 2011. 서울의 겨울철 일평균 기온에 나타난 계절 추이의 변화. 대한지리학회지 46(2):152-167).
  35. Park, H.M. and T.K. Baek. 2009. Progress and land-use characteristics of urban sprawl in Busan metropolitan city using remote sensing and GIS. Journal of Korean Association of Geographic Information Studies 12(2):23-33 (박호명, 백태경. 2009. 원격탐사와 GIS를 이용한 부산광역시 도시화지역의 확산과정과 토지이용 특성에 관한 연구. 한국지리정보학회지 12(2):23-33).
  36. Park, S.Y. 2003. Harmonic analysis of NDVI response patterns to temporal changes in soil moisture content. The Korean Association of Professional Geographers 37(1):67-79.
  37. Park, S.Y. 2009. Synchronicity between satellite-measured leaf phenology and rainfall regime in Hawaiian tropical forests. Photogrammetric Engineering and Remote Sensing 75(10):1231-1237. https://doi.org/10.14358/PERS.75.10.1231
  38. Park, S.Y. 2010. A dynamic relationship between the leaf phenology and rainfall regimes of Hawaiian tropical ecosystems: a remote sensing approach. Singapore Journal of Tropical Geography 31(3):371-383. https://doi.org/10.1111/j.1467-9493.2010.00408.x
  39. Park, S.Y. and H.M. Tak. 2013. Land use changes and climate patterns in Southeast Korea. Journal of Korean Association of Geographic Information Studies 16(2):47-64 (박선엽, 탁한명. 2013. 우리나라 동남부 지역의 토지 이용과 기후 패턴 변화 분석. 한국지리정보학회지 16(2):47-64).
  40. Pielke, R.A., G. Marland, R.A. Betts, T.N. Chase, J.L. Eastman, J.O. Niles, D.S. Niyogi, and S.W. Running. 2002. The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philosophical Transactions of the Royal Society of London A 360(1797):1705-1719. https://doi.org/10.1098/rsta.2002.1027
  41. Qian, C., Z. Yan, and C. Fu. 2012. Climatic changes in the twenty-four solar terms during 1960-2009. Atmospheric Science 57(2-3):276-286.
  42. Seto, K.C. and M. Fragkias. 2005. Quantifying spatiotemporal patterns of urban land-use change in four cities of China with time series landscape metrics. Landscape Ecology 20(7):871-888. https://doi.org/10.1007/s10980-005-5238-8
  43. Stine, A.R., P. Huybers, and I.Y. Fung. 2009. Changes in the phase of the annual cycle of surface temperature. Nature 457(7228):435-441. https://doi.org/10.1038/nature07675
  44. Stone Jr., B. 2009. Land use as climate change mitigation. Environmental Science and Technology 43(24):9052-9056. https://doi.org/10.1021/es902150g
  45. Stone, B. and M.O. Rodgers. 2001. Urban form and thermal efficiency-how the design of cities influence the urban heat island effect. Journal of the American Planning Association 67(2):186-198. https://doi.org/10.1080/01944360108976228
  46. Thomson, D.J. 1995. The seasons, global temperature, and precession. Science 268(5207):59-68. https://doi.org/10.1126/science.268.5207.59
  47. Wilks, D.S. 2011. Statistical Methods in the Atmospheric Sciences. Elsevier, Oxford, UK. pp.428-438.

Cited by

  1. PM10농도의 시공간적 분포 특징과 국지적 기온 변화 간의 상관관계: 부산광역시 사례 분석 vol.23, pp.1, 2016, https://doi.org/10.26863/jkarg.2017.02.23.1.151