• Title/Summary/Keyword: 일반화선형 모형

Search Result 152, Processing Time 0.023 seconds

On the Effects of English Emersion Program for School Students (중학생 몰입영어교육 효과분석)

  • 최경미;박연미
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.1
    • /
    • pp.9-20
    • /
    • 2002
  • This paper is to verify the effects of English immersion program through the case study of the three and an half week English camp run by Hongik University. The student's proficiency in English varies according to different factors. Another goal of this paper is to pin down certain objective factors that have an effect on the English proficiency and the improvement of the proficient. The generalized linear model(GLM) is adopted for the related analyses in this paper.

경시적 자료의 계층적 베이즈 분석

  • 김달호;신임희
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.2
    • /
    • pp.431-437
    • /
    • 1998
  • 본 논문의 목적은 계층적 베이즈 일반화 선형모형을 이용하여 경시적 자료를 분석하는 것이다. 구체적으로 계층적 베이즈 변량효과 모형을 소개하고 무정보적 사전분포 하에서 사후분포가 진(proper)인지에 대한 충분조건을 찾는다 또한, 깁스(Gibbs) 표본자를 사용하여 제안된 계층적 베이즈 절차의 수행에 관해 논의한다. 현실자료를 사용하여 제안된 계층적 베이즈 분석을 예시하고, 이에 대응하는 경험적 베이즈 분석과 비교한다.

  • PDF

Small Area Estimation via Generalized Estimating Equations and the Panel Analysis of Unemployment Rates (일반화추정방정식을 활용한 소지역 추정과 실업률패널분석)

  • Yeo, In-Kwon;Son, Kyoung-Jin;Kim, Young-Won
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.4
    • /
    • pp.665-674
    • /
    • 2008
  • Most of existing studies about the small area estimation deal with the estimation of parameters based on cross-sectional data. However, since many official statistics are repeatedly collected at a regular interval of time, for instance, monthly, quarterly, or yearly, we need an alternative model which can handle characteristics of these kinds of data. In this paper, we investigate the generalized estimating equation which can model time-dependency among response variables and is useful to analyze repeated measurement or longitudinal data. We compare with the generalized linear model and the generalized estimating equation through the estimation of unemployment rates of 25 areas in Gyeongsangnam-do and Ulsan. The data consist of the status of employment and some covariates from January to December 2005.

Analysis of Periodicity of Meteorological Measures and Their Effects on Precipitation Observed with Surface Meteorological Instruments at Eight Southwestern Areas, Korea during 2004KOEP (기상인자의 주기성 분석 및 일반화 선형모형을 이용한 강수영향분석: 2004KEOP의 한반도 남서지방 8개 지역 기상관측자료사용)

  • Kim Hea-Jung;Yum Joonkeun;Lee Yung-Seop;Kim Young-Ah;Chung Hyo-Sang;Cho Chun-Ho
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.2
    • /
    • pp.281-296
    • /
    • 2005
  • This article summarizes our research on estimation of area-specific and time-adjusted rainfall rates during 2004KEOP (Korea enhanced observation period: June 1, $2004{\sim}$ August 31, 2004). The rainfall rate is defined as the proportion of rainfall days per week and areas are consisting of Haenam, Yeosu, Janghung, Heuksando, Gwangju, Mokpo, Jindo, and Wando. Our objectives are to analyze periodicity in area-specific precipitation and the meteorological measures and investigate the relationships between the geographic pattern of the rainfall rates and the corresponding pattern in potential explanatory covariates such as temperature, wind, wind direction, pressure, and humidity. A generalized linear model is introduced to implement the objectives and the patterns are estimated by considering a set of rainfall rates produced using samples from the posterior distribution of the population rainfall rates.

Assessment of variability and uncertainty in bias correction parameters for radar rainfall estimates based on topographical characteristics (지형학적 특성을 고려한 레이더 강수량 편의보정 매개변수의 변동성 및 불확실성 분석)

  • Kim, Tae-Jeong;Ban, Woo-Sik;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.9
    • /
    • pp.589-601
    • /
    • 2019
  • Various applications of radar rainfall data have been actively employed in the field of hydro-meteorology. Since radar rainfall is estimated by using predefined reflectivity-rainfall intensity relationships, they may not have sufficient reproducibility of observations. In this study, a generalized linear model is introduced to better capture the Z-R relationship in the context of bias correction within a Bayesian regression framework. The bias-corrected radar rainfall with the generalized linear model is more accurate than the widely used mean field bias correction method. In addition, we analyzed variability of the bias correction parameters under various geomorphological conditions such as the height of the weather station and the separation distance from the radar. The identified relationship is finally used to derive a regionalized formula which can provide bias correction factors over the entire watershed. It can be concluded that the bias correction parameters and regionalized method obtained from this study could be useful in the field of radar hydrology.

A Study on the Generalization of Multiple Linear Regression Model for Monthly-runoff Estimation (선형회귀모형(線型回歸模型)에 의한 하천(河川) 월(月) 유출량(流出量) 추정(推定)의 일반화(一般化)에 관한 연구(硏究))

  • Kim, Tai Cheol
    • Korean Journal of Agricultural Science
    • /
    • v.7 no.2
    • /
    • pp.131-144
    • /
    • 1980
  • The Linear Regression Model to extend the monthly runoff data in the short-recorded river was proposed by the author in 1979. Here in this study generalization precedure is made to apply that model to any given river basin and to any given station. Lengthier monthly runoff data generated by this generalized model would be useful for water resources assessment and waterworks planning. The results are as follows. 1. This Linear Regression Model which is a transformed water-balance equation attempts to represent the physical properties of the parameters and the time and space varient system in catchment response lumpedly, qualitatively and deductively through the regression coefficients as component grey box, whereas deterministic model deals the foregoings distributedly, quantitatively and inductively through all the integrated processes in the catchment response. This Linear Regression Model would be termed "Statistically deterministic model". 2. Linear regression equations are obtained at four hydrostation in Geum-river basin. Significance test of equations is carried out according to the statistical criterion and shows "Highly" It is recognized th at the regression coefficients of each parameter vary regularly with catchment area increase. Those are: The larger the catchment area, the bigger the loss of precipitation due to interception and detention storage in crease. The larger the catchment area, the bigger the release of baseflow due to catchment slope decrease and storage capacity increase. The larger the catchment area, the bigger the loss of evapotranspiration due to more naked coverage and soil properties. These facts coincide well with hydrological commonsenses. 3. Generalized diagram of regression coefficients is made to follow those commonsenses. By this diagram, Linear Regression Model would be set up for a given river basin and for a given station (Fig.10).

  • PDF

Hub-and-spokes service network design for rail freight transportation (철도화물운송을 위한 Hub-and-spokes서비스네트워크 디자인모형의 개발)

  • 정승주
    • Proceedings of the KOR-KST Conference
    • /
    • 2003.02a
    • /
    • pp.75-93
    • /
    • 2003
  • Hub-and-spokes전략은 교통분야에서 널리 이용되는 네트워크전략이지만, 철도의 경우 대개 이 전략을 이용하기 어려운 네트워크구조를 가지고 있어 그 적용사례를 찾아보기 어렵다. 그러나 유럽에서는 철도망이 도로망처럼 조밀하게 형성되어 있다는 점과 환적 처리기술의 발달로 90년대 초부터 이 전략이 철도화물운송부문에도 도입되기 시작했다. 이러한 관점에서 본 논문은 철도화물운송망에서의 hub-and-spokes전략을 구현하는 서비스네트워크 디자인모형을 개발하고, 모델의 실제철도망에의 적용성을 평가한다. 개발되는 모형이 전략모형임에도 불구하고 모형에서는 일반화된 운영비용 외에 열차속도, 서비스빈도, 터미널에서의 화물처리속도 등에 따른 시간지체비용도 고려되었다. 시간지체비용의 고려에 따라 야기되는 비선형 목적함수는 빈도별 서비스결정변수의 설정을 통해 선형화되어 결과적으로 모형은 선형 binary정수 최적화문제로 표현되었다. 규모가 큰 네트워크의 경우 해도출의 어려움 때문에 본 논문은 전체문제의 분할(decomposition)에 기초한 휴리스틱방법((heuristic method)으로 해결한다. 해도출의 효율성을 높이기 위해 서비스빈도개선과 관련하여 세 알고리즘이 개발되었다. 개발된 알고리즘은 유럽의 실제네트워크를 기초로 도출한 4개의 테스트문제에 적용되어, 해의 정확도와 해 도출의 효율성이 비교·평가되었다.

  • PDF

Estimating soil moisture using machine learning approach: A Case Study to Yongdam watershed (기계학습 기반의 토양함수 예측 기법 개발 (용담댐 시험유역을 중심으로))

  • Huy, Nguyen Dinh;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.167-167
    • /
    • 2018
  • 토양수분은 토양에 포함된 평균 수분량을 나타내며 수문 순환 관점에서 매우 중요한 수문변량 중 하나이다. 본 연구에서는 대표적인 기계학습 방법인 Support Vector Machine (SVM)을 이용한 토양 함수 예측 기법을 개발하고자 하며, 예측인자로서 원격 탐측 기반의 토양함수자료, 강수량, 온도 등을 활용하고자 한다. SVM은 Kernel 함수를 이용하여 복잡한 비선형 관계를 선형 가정을 통해서 해석하는 기계학습 방법으로서 전역모델(global model)로서 다양한 수문기상분야에 적용이 이루어지고 있다. SVM의 장점은 일정 부분의 오차를 허용함으로서 모형의 일반화 측면에서 기존 인공신경망(artificial neural network, ANN)에 비해 우수한 성능을 나타내며, 특히 예측모형으로서 적용성이 매우 크다. 본 연구에서는 과거 토양 함수 자료와 강수, 온도, 위성 관측 기반 정보 등을 이용하여 모형을 적합시키고 이를 미계측 유역으로 확장하는데 연구의 목적이 있으며, 본 연구를 통해 제안된 모형은 용담댐 시험유역을 대상으로 적용되며 기존 ANN 모형 및 다중회귀분석 결과와 비교를 통해 모형의 적합성을 평가하고자한다.

  • PDF

Survey of Models for Random Effects Covariance Matrix in Generalized Linear Mixed Model (일반화 선형혼합모형의 임의효과 공분산행렬을 위한 모형들의 조사 및 고찰)

  • Kim, Jiyeong;Lee, Keunbaik
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.211-219
    • /
    • 2015
  • Generalized linear mixed models are used to analyze longitudinal categorical data. Random effects specify the serial dependence of repeated outcomes in these models; however, the estimation of a random effects covariance matrix is challenging because of many parameters in the matrix and the estimated covariance matrix should satisfy positive definiteness. Several approaches to model the random effects covariance matrix are proposed to overcome these restrictions: modified Cholesky decomposition, moving average Cholesky decomposition, and partial autocorrelation approaches. We review several approaches and present potential future work.