• Title/Summary/Keyword: 일반강도 콘크리트

Search Result 645, Processing Time 0.026 seconds

The Effect of Ground Granulated Blast-Furnace Slag on the Control of Temperature Rising in High Strength Concrete (고강도용 콘크리트의 온도상승 억제를 위한 고로슬래그 미분말의 효과)

  • 문한영;최연왕
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.195-204
    • /
    • 1998
  • Generally, in order to maintain high strength in concrete, it needs high cement content and low water-cement ratio.makes internal temperature rising after concrete placing inevitably, and happens temperature stress that makes initial cracks of concrete structure. Therefore, to control the thermal stress of high-strength concrete, we made 3 types of the fineness of ground granulated blast-furnace slag and 4 steps replacement. and then measured an amount of temperature rising and elapsed time of maximum temperature and strength of concrete. Also we considered the test results of heat evolution amount and heat evolution of cement paste made with 5 steps replacement by GGBF slag.As result of this study, in case of the 50% of replacement and the 6,000$\textrm{cm}^2$/g of fineness, we obtained satisfactory results that not only the controlled effect of temperature rising but strength at early ages.

Experimental Studies on Shear Strength of High-Strength Lightweight Concrete Beam using the Industrial by-products (산업부산물을 활용한 고강도 경량콘크리트 보의 전단강도에 대한실험 연구)

  • Lee, Seung-Jo;Park, Jung-Min;Kim, Wha-Jung
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.621-630
    • /
    • 2006
  • Twelve beams made of lightweight high-strength concrete were tested to determine their diagonal cracking and ultimate shear capacities. A total of 12 beams without(4 beams) and with lightweight(8 beams) were tested in a stiff testing facility, and complete load-midspan deflection curves, including the maximum capacities portion, were obtained. The variables in the test program were concrete strength, which varied 35.4 MPa, 65.3 MPa; shear span-depth ratios a/d=1.5, 2.5, 3.5, 4.5; and tensile steel ratio between 0.57 and 2.3 percent. Also, we divided beam by diagonal tension crack and ultimate shearing strength to propose an equation. In addition, it analyzed comparison mutually applying existing proposal and guide. $V_{cr}$ was as result that AIK recommendations and Zsutty proposal decrease more than a/d=2.5, increased some in Mathey's proposal equation. $V_{cr,\exp}/V_{cr,cal}$ showed tendency of overestimation according to increase of tensile steel ratio and compressive strength of concrete. On the other hand, $V_{cr,\exp}/V_{cr,cal}$ is superior in conformability with an experiment result Zsutty's proposal among other equations. The proposal equation hew that expect $V_{cr}/V_u$, rationally about shearing strength. Therefore, shear strength an equation is considered to be utilized usefully evaluating capacity by change of the shear span depth ratio of lightweight concrete, tensile steel ratio, and compressive strength of the concrete in this research.

Performance Comparision of The $\beta$-NSF Based Superplasticizers Used in Domestic Area (국내에서 유통되고 있는 $\beta$-NSF계 고성능감수제의 성능 비교)

  • 조헌영;노재성;홍성수;이기준
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.4
    • /
    • pp.125-132
    • /
    • 1991
  • $\beta$-NSF 계통의 콘크리트용 고성능감수계를 독자적으로 제조하여(제품C)국내에서 유통되고 있는 $\beta$-NSF계 고성능감수제들과 콘크리트의 유동화특성 및 고강도콘크리트의 특성을 비교검토한 결과는 다음과 같다. 가. $\beta$-NSF계 고성능감수제중에서 M제품과 C제품의 유동화성능 및 고강도성능이 다른 감수제에 비하여 전반적으로 좋게 나타났다. 나. $\beta$-NSF계 고성능감수제를 첨가한 모든 콘크리트는 감수제를 사용하지 않은 일반 콘크리트에 비하여 흐름도의 경시변화가 크며, 동결융해에 대한 저항성이 현저히 떨어지는 것으로 나타났다.

Shear Friction Strength based on Limit Analysis for Ultra-High Performance Fiber Reinforced Concrete (소성 이론에 의한 강섬유 보강 초고성능콘크리트의 전단 마찰 강도식 제안)

  • Lee, Ji-Hyung;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.299-309
    • /
    • 2015
  • Ultra High Performance Fiber Reinforced Concrete (UHPFRC) is distinguished from the normal concrete by outstanding compressive and tensile strength. Cracked normal concrete resists shear by aggregate interlocking while clamped by transverse reinforcement, which is called as shear friction theory. Cracked UHPFRC is expected to have a different shear transfer mechanism due to rather smooth crack face and post-cracking behavior under tensile force. Twenty-four push-off specimens with transverse reinforcement are tested for four different fiber volume ratio and three different ratio of reinforcement along the shear plane. The shear friction strength for monolithic concrete are suggested by limit analysis of plasticity and verified by test results. Plastic analysis gives a conservative, but reasonable estimate. The suggested shear friction factor and effectiveness factor of UHPFRC can be applied for interface shear transfer design of high-strength concrete and fiber reinforced concrete with post-cracking tensile strength.

Micremechanics-based Evaluation of Elastic Modulus of Concrete considering Interfacial Transition Zone (천이영역을 고려한 콘크리트 탄성계수의 미시역학적 추정)

  • 송하원;조호진;변근주
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.2
    • /
    • pp.99-107
    • /
    • 1998
  • 콘크리트는 일반적으로 수회시멘트풀과 골재로 이루어진 이상의 복합체이지만 미시적으로는 수화시멘트풀과 골재, 그리고 천이영역으로 이루어진 삼상의 복합체이다. 수화시멘트풀과 골재 사이에서 형성되는 천이영역은 국부적으로 공극률이 높으므로 콘크리트의 강성과 강도에 많은 영향을 끼친다. 본 논문에서는 이러한 천이영역의 특성을 고려하여 콘크리트의 탄성계수를 추정하기 위해 이원 삼중 내포물 모델을 제안하였다. 제안된 모델에 의한 탄성계수의 추정결과는 실험결과와 비교하여 잘 일치하였으며 제안된 모델은 실험적으로 구하기 힘든 천이영역의 특성을 구하는데 사용될 수 있다.

An Experimental Study on the Permeability Measurement and Development of Ultra Low Permeable Concrete (콘크리트의 투수성 측정 및 초저투수성 콘크리트의 개발 연구)

  • 오병환;정원기;차수원;장봉석
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.5
    • /
    • pp.189-200
    • /
    • 1996
  • The permeability of concrete influences the durability of concrete remarkably. The conventional test method for permeability is very difficult to apply to high strength concrete because of its very low permeability. The present study employs a resonable and realistic test method for permeability of concrete and proposes a very low permeability concrete. To this end, comprehensive tests have been conducted and major test variables include the types and amount of cement. the types and amount of admixtures, and the size of aggregates. The present test results indicate t h a t the permeability decrease with the increase of strength and that the concrete with certain mineral admixtures exhibits very low permeability. The permeability of those high performance concrete is about 1/100 of conventional normal concrete. The present study provides a firm base for the use of very low permeable and hence very durable concrete.

Flexural Performance of Activated Hwangtoh Concrete Beam (활성 황토 콘크리트 보의 휨 성능)

  • Lee, Nam-Kon;Hwang, Hye-Zoo;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.567-574
    • /
    • 2010
  • As a eco-friendly material, Hwangtoh(red clay) has been studied for a partial or complete replacement of portland cement. Most of existing studies focused on the mechanical properties of the Hwangtoh concrete including the compressive strength, drying shrinkage, creep. In the present study, the flexural capacity of the beams made with the Hwangtoh concrete was tested. One of the concrete tested consisted of activated Hwangtoh replacing 20% of the cement. The other consisted 100% activated Hwangtoh replacing all the cement. The simple beams were tested under two point static loading. The flexural strength, cracking moment, deflection, and ductility were compared with those of the beams made with ordinary portland cement concrete.

Non-linear Behavior of New Type Girder Filled by High-Strength Concrete (신형식 거더의 고강도 콘크리트 적용 시 비선형 거동 분석)

  • Choi, Sung-Woo;Lee, Hak;Kong, Jung-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.217-220
    • /
    • 2008
  • Recently, many studies about a high-strength concrete and composite structures are being progressed to get the more economic and stable result in the construction of structure all over the world. One of those studies is about CFTA(Concrete Filled and Tied Steel Tubular Arch) girder that applies an arch structure and a pre-stressed structure to CFT(Concrete Filled Steel Tubular) Structure which is filled with a concrete and improve the stiffness and strength of the structure by the confinement effect of fillers to maximize the efficiency of structure and economic. In this study, non-linear behavior of CFTA girders filled with a general concrete and the high-strength concrete respectively were analyzed by using ABAQUS 6.5-1 and results were compared.

  • PDF

Effects of Aggregate Grading on the Performance of High-Flowing Concrete with General Strength (일반 강도용 고유동 콘크리트에서의 골재 입도 영향)

  • Kim, Sang Chel;Kim, Yun Tae;Shin, Dong Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.63-72
    • /
    • 2012
  • The high-flowing concrete requires additionally or excessively more expensive admixture than conventional concrete. So, the concrete has not to be widely used in practical field due to the increase of production price, need of additional facilities, and excessive development of concrete strength in associate with addition of too much cementitious material even though it has more significant advantages than conventional concrete. Thus, this study aims at developing high-flowing concrete with general strength unlike high strength which has been carried out in conventional study. To observe the role of aggregate in the concrete quantitatively and to increase the performance of high-flowing concrete effectively, parametric studies were carried out such as W/C, s/a, fineness modulus of aggregate, contribution degree of particle sizes, and the effect of 13mm aggregate and fine stone powder as a partial replacement of aggregates. And the effect of these factors on performance of the concrete was evaluated by measuring slump-flow and gap of penetration height in U-typed instrument. As a result, it was found that flowability of high-flowing concrete depends upon grading of fine aggregate more significantly than that of coarse aggregate and is enhanced greatly as fineness modulus of fine aggregate decreases and the value of s/a increases. In addition, the application of 13mm aggregate and fine stone powder are expected as a partial replacement of aggregate in order to increase the performance of high-flowing concrete more effectively.

Comparsions for Flexural Performance of Amorphous Steel Fiber Reinforced Concrete (비정질강섬유보강콘크리트의 휨성능 비교분석)

  • Kim, Byoung-Il;Lee, Sea-Hyun
    • Resources Recycling
    • /
    • v.24 no.3
    • /
    • pp.66-75
    • /
    • 2015
  • The flexural performance of amorphous steel fibers having environmental and economy benefits due to relatively short manufacturing process were evaluated as well as that of hooked steel fibers by varing fiber length and volume fraction. Fiber lengths were 10 mm, 20 mm, 30 mm and fiber volume fractions were varied from 0.3% to 1.2%. Test results with flexural performance showed that mixing design needs to be careful because of relatively high volume of amorphous steel fiber compared to hooked steel fibers. High flexural strength was obtained from both longer fiber length and higher volume fraction. Residual strength and toughness of amorphous steel fiber were similar to that of hooked steel fiber, even though rapid dropping of applied load right after concrete matrix breaking. It can be judged that relatively high ability of energy dissipation around first cracking area relatively overcome rapid dropping of loading.