• Title/Summary/Keyword: 인터넷 정보 신뢰도

Search Result 1,152, Processing Time 0.025 seconds

Frame security method in physical layer using OFB over Gigabit Ethernet Network (기가비트 이더넷 망에서 OFB 방식을 이용한 물리 계층 프레임 보안 기법)

  • Im, Sung-yeal
    • Journal of Internet Computing and Services
    • /
    • v.22 no.5
    • /
    • pp.17-26
    • /
    • 2021
  • This paper is about a physical layer frame security technique using OFB-style encryption/decryption with AES algorithms on Gigabit Ethernet network. We propose a data security technique at the physical layer that performs OFB-style encryption/decryption with AES algorithm with strong security strength when sending and receiving data over Gigabit Ethernet network. Generally, when operating Gigabit Ethernet network, there is no security features, but data security is required, additional devices that apply this technique can be installed to perform security functions. In the case of data transmission over Gigabit Ethernet network, the Ethernet frames conform to IEEE 802.3 specification, which includes several fields to ensure proper reception of data at the receiving node in addition to the data field. When encrypting, only the data field should be encrypted and transmitted in real time. In this paper, we show that only the data field of the IEEE802.3 frame is encrypted and transmitted on the sending node, and only the data field is decrypted to show the plain text on the receiving node, which shows that the encryption/decryption is carried out correctly. Therefore, additional installation of devices that apply this technique can increase the reliability of the system when security for data is required in Ethernet network operating without security features.

Adaptive Beamwidth Control Technique for Low-orbit Satellites for QoS Performance improvement based on Next Generation Military Mobile Satellite Networks (차세대 군 모바일 위성 네트워크 QoS 성능 향상을 위한 저궤도 위성 빔폭 적응적 제어 기법)

  • Jang, Dae-Hee;Hwang, Yoon-Ha;Chung, Jong-Moon
    • Journal of Internet Computing and Services
    • /
    • v.21 no.6
    • /
    • pp.1-12
    • /
    • 2020
  • Low-Orbit satellite mobile networks can provide services through miniaturized terminals with low transmission power, which can be used as reliable means of communication in the national public disaster network and defense sector. However, the high traffic environment in the emergency preparedness situation increases the new call blocking probability and the handover failure probability of the satellite network, and the increase of the handover failure probability affects the QoS because low orbit satellites move in orbit at a very high speed. Among the channel allocation methods of satellite communication, the FCA shows relatively better performance in a high traffic environment than DCA and is suitable for emergency preparedness situations, but in order to optimize QoS when traffic increases, the new call blocking and the handover failure must be minimized. In this paper, we propose LEO-DBC (LEO satellite dynamic beam width control) technique, which improves QoS by adaptive adjustment of beam width of low-orbit satellites and call time of terminals by improving FCA-QH method. Through the LEO-DBC technique, it is expected that the QoS of the mobile satellite communication network can be optimally maintained in high traffic environments in emergency preparedness situations.

Technology Development for Non-Contact Interface of Multi-Region Classifier based on Context-Aware (상황 인식 기반 다중 영역 분류기 비접촉 인터페이스기술 개발)

  • Jin, Songguo;Rhee, Phill-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.175-182
    • /
    • 2020
  • The non-contact eye tracking is a nonintrusive human-computer interface providing hands-free communications for people with severe disabilities. Recently. it is expected to do an important role in non-contact systems due to the recent coronavirus COVID-19, etc. This paper proposes a novel approach for an eye mouse using an eye tracking method based on a context-aware based AdaBoost multi-region classifier and ASSL algorithm. The conventional AdaBoost algorithm, however, cannot provide sufficiently reliable performance in face tracking for eye cursor pointing estimation, because it cannot take advantage of the spatial context relations among facial features. Therefore, we propose the eye-region context based AdaBoost multiple classifier for the efficient non-contact gaze tracking and mouse implementation. The proposed method detects, tracks, and aggregates various eye features to evaluate the gaze and adjusts active and semi-supervised learning based on the on-screen cursor. The proposed system has been successfully employed in eye location, and it can also be used to detect and track eye features. This system controls the computer cursor along the user's gaze and it was postprocessing by applying Gaussian modeling to prevent shaking during the real-time tracking using Kalman filter. In this system, target objects were randomly generated and the eye tracking performance was analyzed according to the Fits law in real time. It is expected that the utilization of non-contact interfaces.

An Accurate Cryptocurrency Price Forecasting using Reverse Walk-Forward Validation (역순 워크 포워드 검증을 이용한 암호화폐 가격 예측)

  • Ahn, Hyun;Jang, Baekcheol
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.45-55
    • /
    • 2022
  • The size of the cryptocurrency market is growing. For example, market capitalization of bitcoin exceeded 500 trillion won. Accordingly, many studies have been conducted to predict the price of cryptocurrency, and most of them have similar methodology of predicting stock prices. However, unlike stock price predictions, machine learning become best model in cryptocurrency price predictions, conceptually cryptocurrency has no passive income from ownership, and statistically, cryptocurrency has at least three times higher liquidity than stocks. Thats why we argue that a methodology different from stock price prediction should be applied to cryptocurrency price prediction studies. We propose Reverse Walk-forward Validation (RWFV), which modifies Walk-forward Validation (WFV). Unlike WFV, RWFV measures accuracy for Validation by pinning the Validation dataset directly in front of the Test dataset in time series, and gradually increasing the size of the Training dataset in front of it in time series. Train data were cut according to the size of the Train dataset with the highest accuracy among all measured Validation accuracy, and then combined with Validation data to measure the accuracy of the Test data. Logistic regression analysis and Support Vector Machine (SVM) were used as the analysis model, and various algorithms and parameters such as L1, L2, rbf, and poly were applied for the reliability of our proposed RWFV. As a result, it was confirmed that all analysis models showed improved accuracy compared to existing studies, and on average, the accuracy increased by 1.23%p. This is a significant improvement in accuracy, given that most of the accuracy of cryptocurrency price prediction remains between 50% and 60% through previous studies.

Building plan research of Smart Ammunition Logistics System based on the 4th industrial technology (4차산업혁명기술 기반 스마트 탄약물류체계 구축 방안 연구)

  • Choi, Jong-Geun;Kim, Byung-Kyoo;Chang, Yoon Seok
    • Journal of Internet Computing and Services
    • /
    • v.23 no.1
    • /
    • pp.135-145
    • /
    • 2022
  • This paper presented a method to build a predictable smart ammunition logistics system using the 4th industrial technology for ammunition logistics, which is the core functions in the field of defense and logistics. We have analyzed the current level of ammunition logistics with various perspectives such as domestic and overseas logistics policies, technology trends, ammunition logistics characteristics, the smart logistics certification measures by Ministry of Land, Infrastructure and Transport. As a result it is considered that the current ammunition logistics needs needs improvement. To improve this, we presented a direction based on the implications derived after analyzing various ongoing programs such as wired/wireless-based automation, smart ammunition depots, and logistics innovation of the army, navy, and air force that can be applied to the ammunition logistics. In order to implement a data-based smart ammunition logistics management system that can achieve innovation and efficiency of total life cycle while meeting changes in the battlefield environment, we presented 4 objectives such as "automation and modernization of field work", "3D-based storage management & improvement of issuing at war," and "data management for prediction-oriented ammunition management". it is expected that there will be benefits such as improvement of operational continuity, guarantee of ammunition reliability, budget reduction, improvement of inefficiencies such as delay, waiting, and double work, and reduction of accidents.

TGC-based Fish Growth Estimation Model using Gaussian Process Regression Approach (가우시안 프로세스 회귀를 통한 열 성장 계수 기반의 어류 성장 예측 모델)

  • Juhyoung Sung;Sungyoon Cho;Da-Eun Jung;Jongwon Kim;Jeonghwan Park;Kiwon Kwon;Young Myoung Ko
    • Journal of Internet Computing and Services
    • /
    • v.24 no.1
    • /
    • pp.61-69
    • /
    • 2023
  • Recently, as the fishery resources are depleted, expectations for productivity improvement by 'rearing fishery' in land farms are greatly rising. In the case of land farms, unlike ocean environments, it is easy to control and manage environmental and breeding factors, and has the advantage of being able to adjust production according to the production plan. On the other hand, unlike in the natural environment, there is a disadvantage in that operation costs may significantly increase due to the artificial management for fish growth. Therefore, profit maximization can be pursued by efficiently operating the farm in accordance with the planned target shipment. In order to operate such an efficient farm and nurture fish, an accurate growth prediction model according to the target fish species is absolutely required. Most of the growth prediction models are mainly numerical results based on statistical analysis using farm data. In this paper, we present a growth prediction model from a stochastic point of view to overcome the difficulties in securing data and the difficulty in providing quantitative expected values for inaccuracies that existing growth prediction models from a statistical point of view may have. For a stochastic approach, modeling is performed by introducing a Gaussian process regression method based on water temperature, which is the most important factor in positive growth. From the corresponding results, it is expected that it will be able to provide reference values for more efficient farm operation by simultaneously providing the average value of the predicted growth value at a specific point in time and the confidence interval for that value.

FinBERT Fine-Tuning for Sentiment Analysis: Exploring the Effectiveness of Datasets and Hyperparameters (감성 분석을 위한 FinBERT 미세 조정: 데이터 세트와 하이퍼파라미터의 효과성 탐구)

  • Jae Heon Kim;Hui Do Jung;Beakcheol Jang
    • Journal of Internet Computing and Services
    • /
    • v.24 no.4
    • /
    • pp.127-135
    • /
    • 2023
  • This research paper explores the application of FinBERT, a variational BERT-based model pre-trained on financial domain, for sentiment analysis in the financial domain while focusing on the process of identifying suitable training data and hyperparameters. Our goal is to offer a comprehensive guide on effectively utilizing the FinBERT model for accurate sentiment analysis by employing various datasets and fine-tuning hyperparameters. We outline the architecture and workflow of the proposed approach for fine-tuning the FinBERT model in this study, emphasizing the performance of various datasets and hyperparameters for sentiment analysis tasks. Additionally, we verify the reliability of GPT-3 as a suitable annotator by using it for sentiment labeling tasks. Our results show that the fine-tuned FinBERT model excels across a range of datasets and that the optimal combination is a learning rate of 5e-5 and a batch size of 64, which perform consistently well across all datasets. Furthermore, based on the significant performance improvement of the FinBERT model with our Twitter data in general domain compared to our news data in general domain, we also express uncertainty about the model being further pre-trained only on financial news data. We simplify the complex process of determining the optimal approach to the FinBERT model and provide guidelines for selecting additional training datasets and hyperparameters within the fine-tuning process of financial sentiment analysis models.

Whose Opinion Matters More? A Study on the Effect of Contradictory Word of Mouth on the Intention of Purchase (온라인 구전이 구매의도에 미치는 영향: 정보원 유형간 구전방향의 불일치성을 중심으로)

  • Soo ji Kim;Bumsoo Kim
    • Knowledge Management Research
    • /
    • v.25 no.2
    • /
    • pp.115-134
    • /
    • 2024
  • In an age where consumers can easily search and pass on their opinions of products and purchasing decisions through the internet, Electronic-word-of-mouth(Ewom) plays an important role in decision making of other potential customers. In this study, we empirically analyze the impact EWOM on consumer purchase decisions, when contradictory Ewom is presented from varying sources of information, such as experts and general consumers. First, we find that when there is a consensus among different information sources there exists a positive relationship between Ewom sentiment and purchase intent, confirming the results of previous literature. However, when expert opinion and consumer opinion do not match we find that consumer opinion is more impactful on purchasing decisions compared to the expert opinion, regardless of product types. The findings of this study add insight to the current literature by examining the effect of contradictory Ewom on purchase decisions, and also to industry marketers by presenting a more efficient strategy in promoting positive Ewom for different product types.

Fine-tuning BERT-based NLP Models for Sentiment Analysis of Korean Reviews: Optimizing the sequence length (BERT 기반 자연어처리 모델의 미세 조정을 통한 한국어 리뷰 감성 분석: 입력 시퀀스 길이 최적화)

  • Sunga Hwang;Seyeon Park;Beakcheol Jang
    • Journal of Internet Computing and Services
    • /
    • v.25 no.4
    • /
    • pp.47-56
    • /
    • 2024
  • This paper proposes a method for fine-tuning BERT-based natural language processing models to perform sentiment analysis on Korean review data. By varying the input sequence length during this process and comparing the performance, we aim to explore the optimal performance according to the input sequence length. For this purpose, text review data collected from the clothing shopping platform M was utilized. Through web scraping, review data was collected. During the data preprocessing stage, positive and negative satisfaction scores were recalibrated to improve the accuracy of the analysis. Specifically, the GPT-4 API was used to reset the labels to reflect the actual sentiment of the review texts, and data imbalance issues were addressed by adjusting the data to 6:4 ratio. The reviews on the clothing shopping platform averaged about 12 tokens in length, and to provide the optimal model suitable for this, five BERT-based pre-trained models were used in the modeling stage, focusing on input sequence length and memory usage for performance comparison. The experimental results indicated that an input sequence length of 64 generally exhibited the most appropriate performance and memory usage. In particular, the KcELECTRA model showed optimal performance and memory usage at an input sequence length of 64, achieving higher than 92% accuracy and reliability in sentiment analysis of Korean review data. Furthermore, by utilizing BERTopic, we provide a Korean review sentiment analysis process that classifies new incoming review data by category and extracts sentiment scores for each category using the final constructed model.

Fast Join Mechanism that considers the switching of the tree in Overlay Multicast (오버레이 멀티캐스팅에서 트리의 스위칭을 고려한 빠른 멤버 가입 방안에 관한 연구)

  • Cho, Sung-Yean;Rho, Kyung-Taeg;Park, Myong-Soon
    • The KIPS Transactions:PartC
    • /
    • v.10C no.5
    • /
    • pp.625-634
    • /
    • 2003
  • More than a decade after its initial proposal, deployment of IP Multicast has been limited due to the problem of traffic control in multicast routing, multicast address allocation in global internet, reliable multicast transport techniques etc. Lately, according to increase of multicast application service such as internet broadcast, real time security information service etc., overlay multicast is developed as a new internet multicast technology. In this paper, we describe an overlay multicast protocol and propose fast join mechanism that considers switching of the tree. To find a potential parent, an existing search algorithm descends the tree from the root by one level at a time, and it causes long joining latency. Also, it is try to select the nearest node as a potential parent. However, it can't select the nearest node by the degree limit of the node. As a result, the generated tree has low efficiency. To reduce long joining latency and improve the efficiency of the tree, we propose searching two levels of the tree at a time. This method forwards joining request message to own children node. So, at ordinary times, there is no overhead to keep the tree. But the joining request came, the increasing number of searching messages will reduce a long joining latency. Also searching more nodes will be helpful to construct more efficient trees. In order to evaluate the performance of our fast join mechanism, we measure the metrics such as the search latency and the number of searched node and the number of switching by the number of members and degree limit. The simulation results show that the performance of our mechanism is superior to that of the existing mechanism.