• Title/Summary/Keyword: 인터넷 정보

Search Result 21,726, Processing Time 0.054 seconds

An Analysis of the Internal Marketing Impact on the Market Capitalization Fluctuation Rate based on the Online Company Reviews from Jobplanet (직원을 위한 내부마케팅이 기업의 시가 총액 변동률에 미치는 영향 분석: 잡플래닛 기업 리뷰를 중심으로)

  • Kichul Choi;Sang-Yong Tom Lee
    • Information Systems Review
    • /
    • v.20 no.2
    • /
    • pp.39-62
    • /
    • 2018
  • Thanks to the growth of computing power and the recent development of data analytics, researchers have started to work on the data produced by users through the Internet or social media. This study is in line with these recent research trends and attempts to adopt data analytical techniques. We focus on the impact of "internal marketing" factors on firm performance, which is typically studied through survey methodologies. We looked into the job review platform Jobplanet (www.jobplanet.co.kr), which is a website where employees and former employees anonymously review companies and their management. With web crawling processes, we collected over 40K data points and performed morphological analysis to classify employees' reviews for internal marketing data. We then implemented econometric analysis to see the relationship between internal marketing and market capitalization. Contrary to the findings of extant survey studies, internal marketing is positively related to a firm's market capitalization only within a limited area. In most of the areas, the relationships are negative. Particularly, female-friendly environment and human resource development (HRD) are the areas exhibiting positive relations with market capitalization in the manufacturing industry. In the service industry, most of the areas, such as employ welfare and work-life balance, are negatively related with market capitalization. When firm size is small (or the history is short), female-friendly environment positively affect firm performance. On the contrary, when firm size is big (or the history is long), most of the internal marketing factors are either negative or insignificant. We explain the theoretical contributions and managerial implications with these results.

Image Watermarking for Copyright Protection of Images on Shopping Mall (쇼핑몰 이미지 저작권보호를 위한 영상 워터마킹)

  • Bae, Kyoung-Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.147-157
    • /
    • 2013
  • With the advent of the digital environment that can be accessed anytime, anywhere with the introduction of high-speed network, the free distribution and use of digital content were made possible. Ironically this environment is raising a variety of copyright infringement, and product images used in the online shopping mall are pirated frequently. There are many controversial issues whether shopping mall images are creative works or not. According to Supreme Court's decision in 2001, to ad pictures taken with ham products is simply a clone of the appearance of objects to deliver nothing but the decision was not only creative expression. But for the photographer's losses recognized in the advertising photo shoot takes the typical cost was estimated damages. According to Seoul District Court precedents in 2003, if there are the photographer's personality and creativity in the selection of the subject, the composition of the set, the direction and amount of light control, set the angle of the camera, shutter speed, shutter chance, other shooting methods for capturing, developing and printing process, the works should be protected by copyright law by the Court's sentence. In order to receive copyright protection of the shopping mall images by the law, it is simply not to convey the status of the product, the photographer's personality and creativity can be recognized that it requires effort. Accordingly, the cost of making the mall image increases, and the necessity for copyright protection becomes higher. The product images of the online shopping mall have a very unique configuration unlike the general pictures such as portraits and landscape photos and, therefore, the general image watermarking technique can not satisfy the requirements of the image watermarking. Because background of product images commonly used in shopping malls is white or black, or gray scale (gradient) color, it is difficult to utilize the space to embed a watermark and the area is very sensitive even a slight change. In this paper, the characteristics of images used in shopping malls are analyzed and a watermarking technology which is suitable to the shopping mall images is proposed. The proposed image watermarking technology divide a product image into smaller blocks, and the corresponding blocks are transformed by DCT (Discrete Cosine Transform), and then the watermark information was inserted into images using quantization of DCT coefficients. Because uniform treatment of the DCT coefficients for quantization cause visual blocking artifacts, the proposed algorithm used weighted mask which quantizes finely the coefficients located block boundaries and coarsely the coefficients located center area of the block. This mask improves subjective visual quality as well as the objective quality of the images. In addition, in order to improve the safety of the algorithm, the blocks which is embedded the watermark are randomly selected and the turbo code is used to reduce the BER when extracting the watermark. The PSNR(Peak Signal to Noise Ratio) of the shopping mall image watermarked by the proposed algorithm is 40.7~48.5[dB] and BER(Bit Error Rate) after JPEG with QF = 70 is 0. This means the watermarked image is high quality and the algorithm is robust to JPEG compression that is used generally at the online shopping malls. Also, for 40% change in size and 40 degrees of rotation, the BER is 0. In general, the shopping malls are used compressed images with QF which is higher than 90. Because the pirated image is used to replicate from original image, the proposed algorithm can identify the copyright infringement in the most cases. As shown the experimental results, the proposed algorithm is suitable to the shopping mall images with simple background. However, the future study should be carried out to enhance the robustness of the proposed algorithm because the robustness loss is occurred after mask process.

Intelligent VOC Analyzing System Using Opinion Mining (오피니언 마이닝을 이용한 지능형 VOC 분석시스템)

  • Kim, Yoosin;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.113-125
    • /
    • 2013
  • Every company wants to know customer's requirement and makes an effort to meet them. Cause that, communication between customer and company became core competition of business and that important is increasing continuously. There are several strategies to find customer's needs, but VOC (Voice of customer) is one of most powerful communication tools and VOC gathering by several channels as telephone, post, e-mail, website and so on is so meaningful. So, almost company is gathering VOC and operating VOC system. VOC is important not only to business organization but also public organization such as government, education institute, and medical center that should drive up public service quality and customer satisfaction. Accordingly, they make a VOC gathering and analyzing System and then use for making a new product and service, and upgrade. In recent years, innovations in internet and ICT have made diverse channels such as SNS, mobile, website and call-center to collect VOC data. Although a lot of VOC data is collected through diverse channel, the proper utilization is still difficult. It is because the VOC data is made of very emotional contents by voice or text of informal style and the volume of the VOC data are so big. These unstructured big data make a difficult to store and analyze for use by human. So that, the organization need to automatic collecting, storing, classifying and analyzing system for unstructured big VOC data. This study propose an intelligent VOC analyzing system based on opinion mining to classify the unstructured VOC data automatically and determine the polarity as well as the type of VOC. And then, the basis of the VOC opinion analyzing system, called domain-oriented sentiment dictionary is created and corresponding stages are presented in detail. The experiment is conducted with 4,300 VOC data collected from a medical website to measure the effectiveness of the proposed system and utilized them to develop the sensitive data dictionary by determining the special sentiment vocabulary and their polarity value in a medical domain. Through the experiment, it comes out that positive terms such as "칭찬, 친절함, 감사, 무사히, 잘해, 감동, 미소" have high positive opinion value, and negative terms such as "퉁명, 뭡니까, 말하더군요, 무시하는" have strong negative opinion. These terms are in general use and the experiment result seems to be a high probability of opinion polarity. Furthermore, the accuracy of proposed VOC classification model has been compared and the highest classification accuracy of 77.8% is conformed at threshold with -0.50 of opinion classification of VOC. Through the proposed intelligent VOC analyzing system, the real time opinion classification and response priority of VOC can be predicted. Ultimately the positive effectiveness is expected to catch the customer complains at early stage and deal with it quickly with the lower number of staff to operate the VOC system. It can be made available human resource and time of customer service part. Above all, this study is new try to automatic analyzing the unstructured VOC data using opinion mining, and shows that the system could be used as variable to classify the positive or negative polarity of VOC opinion. It is expected to suggest practical framework of the VOC analysis to diverse use and the model can be used as real VOC analyzing system if it is implemented as system. Despite experiment results and expectation, this study has several limits. First of all, the sample data is only collected from a hospital web-site. It means that the sentimental dictionary made by sample data can be lean too much towards on that hospital and web-site. Therefore, next research has to take several channels such as call-center and SNS, and other domain like government, financial company, and education institute.

A Study on the Improvement of Recommendation Accuracy by Using Category Association Rule Mining (카테고리 연관 규칙 마이닝을 활용한 추천 정확도 향상 기법)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.27-42
    • /
    • 2020
  • Traditional companies with offline stores were unable to secure large display space due to the problems of cost. This limitation inevitably allowed limited kinds of products to be displayed on the shelves, which resulted in consumers being deprived of the opportunity to experience various items. Taking advantage of the virtual space called the Internet, online shopping goes beyond the limits of limitations in physical space of offline shopping and is now able to display numerous products on web pages that can satisfy consumers with a variety of needs. Paradoxically, however, this can also cause consumers to experience the difficulty of comparing and evaluating too many alternatives in their purchase decision-making process. As an effort to address this side effect, various kinds of consumer's purchase decision support systems have been studied, such as keyword-based item search service and recommender systems. These systems can reduce search time for items, prevent consumer from leaving while browsing, and contribute to the seller's increased sales. Among those systems, recommender systems based on association rule mining techniques can effectively detect interrelated products from transaction data such as orders. The association between products obtained by statistical analysis provides clues to predicting how interested consumers will be in another product. However, since its algorithm is based on the number of transactions, products not sold enough so far in the early days of launch may not be included in the list of recommendations even though they are highly likely to be sold. Such missing items may not have sufficient opportunities to be exposed to consumers to record sufficient sales, and then fall into a vicious cycle of a vicious cycle of declining sales and omission in the recommendation list. This situation is an inevitable outcome in situations in which recommendations are made based on past transaction histories, rather than on determining potential future sales possibilities. This study started with the idea that reflecting the means by which this potential possibility can be identified indirectly would help to select highly recommended products. In the light of the fact that the attributes of a product affect the consumer's purchasing decisions, this study was conducted to reflect them in the recommender systems. In other words, consumers who visit a product page have shown interest in the attributes of the product and would be also interested in other products with the same attributes. On such assumption, based on these attributes, the recommender system can select recommended products that can show a higher acceptance rate. Given that a category is one of the main attributes of a product, it can be a good indicator of not only direct associations between two items but also potential associations that have yet to be revealed. Based on this idea, the study devised a recommender system that reflects not only associations between products but also categories. Through regression analysis, two kinds of associations were combined to form a model that could predict the hit rate of recommendation. To evaluate the performance of the proposed model, another regression model was also developed based only on associations between products. Comparative experiments were designed to be similar to the environment in which products are actually recommended in online shopping malls. First, the association rules for all possible combinations of antecedent and consequent items were generated from the order data. Then, hit rates for each of the associated rules were predicted from the support and confidence that are calculated by each of the models. The comparative experiments using order data collected from an online shopping mall show that the recommendation accuracy can be improved by further reflecting not only the association between products but also categories in the recommendation of related products. The proposed model showed a 2 to 3 percent improvement in hit rates compared to the existing model. From a practical point of view, it is expected to have a positive effect on improving consumers' purchasing satisfaction and increasing sellers' sales.

Multi-Dimensional Analysis Method of Product Reviews for Market Insight (마켓 인사이트를 위한 상품 리뷰의 다차원 분석 방안)

  • Park, Jeong Hyun;Lee, Seo Ho;Lim, Gyu Jin;Yeo, Un Yeong;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.57-78
    • /
    • 2020
  • With the development of the Internet, consumers have had an opportunity to check product information easily through E-Commerce. Product reviews used in the process of purchasing goods are based on user experience, allowing consumers to engage as producers of information as well as refer to information. This can be a way to increase the efficiency of purchasing decisions from the perspective of consumers, and from the seller's point of view, it can help develop products and strengthen their competitiveness. However, it takes a lot of time and effort to understand the overall assessment and assessment dimensions of the products that I think are important in reading the vast amount of product reviews offered by E-Commerce for the products consumers want to compare. This is because product reviews are unstructured information and it is difficult to read sentiment of reviews and assessment dimension immediately. For example, consumers who want to purchase a laptop would like to check the assessment of comparative products at each dimension, such as performance, weight, delivery, speed, and design. Therefore, in this paper, we would like to propose a method to automatically generate multi-dimensional product assessment scores in product reviews that we would like to compare. The methods presented in this study consist largely of two phases. One is the pre-preparation phase and the second is the individual product scoring phase. In the pre-preparation phase, a dimensioned classification model and a sentiment analysis model are created based on a review of the large category product group review. By combining word embedding and association analysis, the dimensioned classification model complements the limitation that word embedding methods for finding relevance between dimensions and words in existing studies see only the distance of words in sentences. Sentiment analysis models generate CNN models by organizing learning data tagged with positives and negatives on a phrase unit for accurate polarity detection. Through this, the individual product scoring phase applies the models pre-prepared for the phrase unit review. Multi-dimensional assessment scores can be obtained by aggregating them by assessment dimension according to the proportion of reviews organized like this, which are grouped among those that are judged to describe a specific dimension for each phrase. In the experiment of this paper, approximately 260,000 reviews of the large category product group are collected to form a dimensioned classification model and a sentiment analysis model. In addition, reviews of the laptops of S and L companies selling at E-Commerce are collected and used as experimental data, respectively. The dimensioned classification model classified individual product reviews broken down into phrases into six assessment dimensions and combined the existing word embedding method with an association analysis indicating frequency between words and dimensions. As a result of combining word embedding and association analysis, the accuracy of the model increased by 13.7%. The sentiment analysis models could be seen to closely analyze the assessment when they were taught in a phrase unit rather than in sentences. As a result, it was confirmed that the accuracy was 29.4% higher than the sentence-based model. Through this study, both sellers and consumers can expect efficient decision making in purchasing and product development, given that they can make multi-dimensional comparisons of products. In addition, text reviews, which are unstructured data, were transformed into objective values such as frequency and morpheme, and they were analysed together using word embedding and association analysis to improve the objectivity aspects of more precise multi-dimensional analysis and research. This will be an attractive analysis model in terms of not only enabling more effective service deployment during the evolving E-Commerce market and fierce competition, but also satisfying both customers.

An Exploratory study on the demand for training programs to improve Real Estate Agents job performance -Focused on Cheonan, Chungnam- (부동산중개인의 직무능력 향상을 위한 교육프로그램 욕구에 관한 탐색적 연구 -충청남도 천안지역을 중심으로-)

  • Lee, Jae-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.3856-3868
    • /
    • 2011
  • Until recently, research trend in real estate has been focused on real estate market and the market analysis. But the studies on real estate training program development for real estate agents to improve their job performance are relatively short in numbers. Thus, this study shows empirical analysis of the needs for the training programs for real estate agents in Cheonan to improve their job performance. The results are as follows. First, in the survey of asking what educational contents they need in order to improve real estate agents' job performance, most of the respondents show their needs for the analysis of house's value, legal knowledge, real estate management, accounting, real estate marketing, and understanding of the real estate policy. This is because they are well aware that the best way of responding to the changing clients' needs comes from training programs. Secondly, asked about real estate marketing strategies, most of respondents showed their awareness of new strategies to meet the needs of clients. This is because new forms of marketing strategies including internet ads are needed in the field as the paradigm including Information Technology changes. Thirdly, asked about the need for real estate-related training programs, 92% of the respondents answered they need real estate education programs run by the continuing education centers of the universities. In addition, the survey showed their needs for retraining programs that utilize the resources in the local universities. Other than this, to have effective and efficient training programs, they demanded running a training system by utilizing the human resources of the universities under the name of the department of 'Real Estate Contract' for real estate agents' job performance. Fourthly, the survey revealed real estate management(44.2%) and real estate marketing(42.3%) is the most chosen contents they want to take in the regular course for improving real estate agents' job performance. This shows their will to understand clients' needs through the mind of real estate management and real estate marketing. The survey showed they prefer the training programs as an irregular course to those in the regular one. Despite the above results, this study chose subjects only in Cheanan and thus it needs to research more diverse areas. The needs of programs to improve real estate agents job performance should be analyzed empirically targeting the real estate agents not just in Cheonan but also cities like Pyeongchon, Ilsan and Bundang in which real estate business is booming, as well as undergraduate and graduate students whose major is real estate studies. These studies will be able to provide information to help develop the customized training programs by evaluating elements that real estate agents need in order to meet clients satisfaction and improve their job performance. Many variables of the program development learned through these studies can be incorporated in the curriculum of the real estate studies and used very practically as information for the development of the real estate studies in this fast changing era.

Color-related Query Processing for Intelligent E-Commerce Search (지능형 검색엔진을 위한 색상 질의 처리 방안)

  • Hong, Jung A;Koo, Kyo Jung;Cha, Ji Won;Seo, Ah Jeong;Yeo, Un Yeong;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.109-125
    • /
    • 2019
  • As interest on intelligent search engines increases, various studies have been conducted to extract and utilize the features related to products intelligencely. In particular, when users search for goods in e-commerce search engines, the 'color' of a product is an important feature that describes the product. Therefore, it is necessary to deal with the synonyms of color terms in order to produce accurate results to user's color-related queries. Previous studies have suggested dictionary-based approach to process synonyms for color features. However, the dictionary-based approach has a limitation that it cannot handle unregistered color-related terms in user queries. In order to overcome the limitation of the conventional methods, this research proposes a model which extracts RGB values from an internet search engine in real time, and outputs similar color names based on designated color information. At first, a color term dictionary was constructed which includes color names and R, G, B values of each color from Korean color standard digital palette program and the Wikipedia color list for the basic color search. The dictionary has been made more robust by adding 138 color names converted from English color names to foreign words in Korean, and with corresponding RGB values. Therefore, the fininal color dictionary includes a total of 671 color names and corresponding RGB values. The method proposed in this research starts by searching for a specific color which a user searched for. Then, the presence of the searched color in the built-in color dictionary is checked. If there exists the color in the dictionary, the RGB values of the color in the dictioanry are used as reference values of the retrieved color. If the searched color does not exist in the dictionary, the top-5 Google image search results of the searched color are crawled and average RGB values are extracted in certain middle area of each image. To extract the RGB values in images, a variety of different ways was attempted since there are limits to simply obtain the average of the RGB values of the center area of images. As a result, clustering RGB values in image's certain area and making average value of the cluster with the highest density as the reference values showed the best performance. Based on the reference RGB values of the searched color, the RGB values of all the colors in the color dictionary constructed aforetime are compared. Then a color list is created with colors within the range of ${\pm}50$ for each R value, G value, and B value. Finally, using the Euclidean distance between the above results and the reference RGB values of the searched color, the color with the highest similarity from up to five colors becomes the final outcome. In order to evaluate the usefulness of the proposed method, we performed an experiment. In the experiment, 300 color names and corresponding color RGB values by the questionnaires were obtained. They are used to compare the RGB values obtained from four different methods including the proposed method. The average euclidean distance of CIE-Lab using our method was about 13.85, which showed a relatively low distance compared to 3088 for the case using synonym dictionary only and 30.38 for the case using the dictionary with Korean synonym website WordNet. The case which didn't use clustering method of the proposed method showed 13.88 of average euclidean distance, which implies the DBSCAN clustering of the proposed method can reduce the Euclidean distance. This research suggests a new color synonym processing method based on RGB values that combines the dictionary method with the real time synonym processing method for new color names. This method enables to get rid of the limit of the dictionary-based approach which is a conventional synonym processing method. This research can contribute to improve the intelligence of e-commerce search systems especially on the color searching feature.

Energy and nutrition evaluation per single serving package for each type of home meal replacement rice (가정간편식 밥류의 유형별 1회 제공 포장량 당 에너지 및 영양성분 함량 평가)

  • Choi, In-Young;Yeon, Jee-Young;Kim, Mi-Hyun
    • Journal of Nutrition and Health
    • /
    • v.55 no.4
    • /
    • pp.476-491
    • /
    • 2022
  • Purpose: The purpose of this study was to evaluate the energy and nutrient contents of home meal replacement (HMR) rice products per single serving package based on nutrition labels. Methods: The market research was conducted from February to July 2021 on products sold on the internet, at convenience stores, etc. A total of 406 products were investigated. The products were divided into the following 6 classifications: instant rice (n = 45), cup rice (n = 64), frozen rice (n = 188), rice bowls with toppings (n = 32), gimbap (n = 38), and triangular gimbap (n = 39). Results: The mean packaging weight per serving was the highest in the rice bowl with toppings at 297.1 g, followed by cup rice (264.0 g), frozen rice (239.5 g), gimbap (230.2 g), instant rice (193.4 g), and triangular gimbap (121.6 g) (p < 0.001). The energy per serving package for the rice bowl with toppings was significantly the highest at 496.0 kcal (p < 0.001). The sodium content per serving package of gimbap was the highest at 1,021.8 mg and that of the instant rice was lowest at 37.4 mg (p < 0.001). The price per serving package of the rice bowl with toppings at 4,333.8 won was the highest. The contribution to the daily nutritional value per serving package of all types of HMR rice products surveyed showed an average range of 10-25% for energy, 11-22% for carbohydrates, and 2-51% for sodium. Conclusion: These results indicate the energy and nutrient contents of HMR rice products, vary by type. Therefore, consumers should review the nutrition labeling to select an appropriate HMR rice product based on their intended consumption.

An Exploratory Study on the Components of Visual Merchandising of Internet Shopping Mall (인터넷쇼핑몰의 VMD 구성요인에 대한 탐색적 연구)

  • Kim, Kwang-Seok;Shin, Jong-Kuk;Koo, Dong-Mo
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.2
    • /
    • pp.19-45
    • /
    • 2008
  • This study is to empirically examine the primary dimensions of visual merchandising (VMD) of internet shopping mall, namely store design, merchandise, and merchandising cues, to be a attractive virtual store to the shoppers. The authors reviewed the literature related to the major components of VMD from the perspective of the AIDA model, which has been mainly applied to the offline store settings. The major purposes of the study are as follows; first, tries to derive the variables related with the components of visual merchandising through reviewing the existing literatures, establish the hypotheses, and test it empirically. Second, examines the relationships between the components of VMD and the attitude toward the VMD, however, putting more emphasis on finding out the component structure of the VMD. VMD needs to be examined with the perspective that an online shopping mall is a virtual self-service or clerkless store, which could reduce the number of employees, help the shoppers search, evaluate and purchase for themselves, and to be explored in terms of the in-store persuasion processes of customers. This study reviewed the literatures related to store design, merchandise, and merchandising cues which might be relevant to the store, product, and promotion respectively. VMD is a total communication tool, and AIDA model could explain the in-store consumer behavior of online shopping. Store design has to do with triggering a consumer attention to the online mall, merchandise with a product related interest, and merchandising cues with promotions such as recommendation and links that induce the desire to pruchase. These three steps might be seen as the processes for purchase actions. The theoretical rationale for the relationship between VMD and AIDA could be found in Tyagi(2005) that the three steps of consumer-oriented merchandising are a store, a product assortment, and placement, in Omar(1999) that three types of interior display are a architectural design display, commodity display, and point-of-sales(POS) display, and in Davies and Ward(2005) that the retail store interior image is related to an atmosphere, merchandise, and in-store promotion. Lee et al(2000) suggested as the web merchandising components a merchandising cues, a shopping metaphor which is an assistant tool for search, a store design, a layout(web design), and a product assortment. The store design which includes differentiation, simplicity and navigation is supposed to be related to the attention to the virtual store. Second, the merchandise dimensions comprising product assortments, visual information and product reputation have to do with the interest in the product offerings. Finally, the merchandising cues that refer to merchandiser(MD)'s recommendation of products and providing the hyperlinks to relevant goods for the shopper is concerned with attempt to induce the desire to purchase. The questionnaire survey was carried out to collect the data about the consumers who would shop at internet shopping malls frequently. To select the subject malls, the mall ranking data announced by a mall rating agency was used to differentiate the most popular and least popular five mall each. The subjects was instructed to answer the questions after navigating the designated mall for five minutes. The 300 questionnaire was distributed to the consumers, 166 samples were used in the final analysis. The empirical testing focused on identifying and confirming the dimensionality of VMD and its subdimensions using a structural equation modeling method. The confirmatory factor analysis for the endogeneous and exogeneous variables was carried out in four parts. The second-order factor analysis was done for a store design, a merchandise, and a merchandising cues, and first-order confirmatory factor analysis for the attitude toward the VMD. The model test results shows that the chi-square value of structural equation is 144.39(d.f 49), significant at 0.01 level which means the proposed model was rejected. But, judging from the ratio of chi-square value vs. degree of freedom, the ratio was 2.94 which smaller than an acceptable level of 3.0, RMR is 0.087 which is higher than a generally acceptable level of 0.08. GFI and AGFI is turned out to be 0.90 and 0.84 respectively. Both NFI and NNFI is 0.94, and CFI 0.95. The major test results are as follows; first, the second-order factor analysis and structural equational modeling reveals that the differentiation, simplicity and ease of identifying current status of the transaction are confirmed to be subdimensions of store design and to be a significant predictors of the dependent variable. This result implies that when designing an online shopping mall, it is necessary to differentiate visually from other malls to improve the effectiveness of the communications of store design. That is, the differentiated store design raise the contrast stimulus to sensory organs to promote the memory of the store and to have a favorable attitude toward the VMD of a store. The results that navigation which means the easiness of identifying current status of shopping affects the attitude to VMD could be interpreted that the navigating processes via the hyperlinks which is characteristics of an internet shopping is a complex and cognitive process and shoppers are likely to lack the sense of overall structure of the store. Consequently, shoppers are likely to be alost amid shopping not knowing where to go. The orientation tool enhance the accessibility of information to raise the perceptive power about the store environment.(Titus & Everett 1995) Second, the primary dimension of merchandise and its subdimensions was confirmed to be unidimensional respectively, have a construct validity, and nomological validity which the VMD dimensions supposed to have a positive correlation with the dependent variable. The subdimensions of product assortment, brand fame and information provision proved to have a positive effect on the attitude toward the VMD. It could be interpreted that the more plentiful the product and brand assortment of the mall is, the more likely the shoppers to favor it. Brand fame and information provision as well affect the VMD attitude, which means that the more famous the brand, the more likely the shoppers would trust and feel familiar with the mall, and the plentifully and visually presented information could have the shopper have a favorable attitude toward the store VMD. Third, it turned out to be that merchandising cue of product recommendation and hyperlinks affect the VMD attitude. This could be interpreted that recommended products could reduce the uncertainty related with the purchase decision, and the hyperlinks to relevant products would help the shopper save the cognitive effort exerted into the information search and gathering, which could lead to a favorable attitude to the VMD. This study tried to sheds some new light on the VMD of online store by reviewing the variables mentioned to be relevant with offline VMD in the existing literatures, and tried to link the VMD components from the perspective of AIDA model. The effect size of the VMD dimensions on the attitude was in the order of the merchandise, the store design and the merchandising cues.It is said that an internet has an unlimited place for display, however, the virtual store is not unlimited since the consumer has a limited amount of cognitive ability to process the external information and internal memory. Particularly, the shoppers are likely to face some difficulties in decision making on account of too many alternative and information overloads. Therefore, the internet shopping mall manager should take into consideration the cost of information search on the part of the consumer, to establish the optimal product placements and search routes. An efficient store composition would be possible by reducing the psychological burdens and cognitive efforts exerted to information search and alternatives evaluation. The store image is in most part determined by the product category and its brand it deals in. The results of this study support this proposition that the merchandise is most important to the VMD attitude than other components, the manager is required to take a strategic approach to VMD. The internet users are getting more accustomed and more knowledgeable about the internet media and more likely to accept the internet as a shopping channel as the period of time during which they use the internet to shop become longer. The web merchandiser should be aware that the product introduction using a moving pictures and a bulletin board become more important in order to present the interactive product information visually and communicate with customers more actively, therefore leading to making the quantity and quality of product information more rich.

  • PDF

Changes in Agricultural Extension Services in Korea (한국농촌지도사업(韓國農村指導事業)의 변동(變動))

  • Fujita, Yasuki;Lee, Yong-Hwan;Kim, Sung-Soo
    • Journal of Agricultural Extension & Community Development
    • /
    • v.7 no.1
    • /
    • pp.155-166
    • /
    • 2000
  • When the marcher visited Korea in fall 1994, he was shocked to see high rise apartment buildings around the capitol region including Seoul and Suwon, resulting from rising demand of housing because of urban migration followed by second and third industrial development. After 6 years in March 2000, the researcher witnessed more apartment buildings and vinyl house complexes, one of the evidences of continued economic progress in Korea. Korea had to receive the rescue finance from International Monetary Fund (IMF) because of financial crisis in 1997. However, the sign of recovery was seen in a year, and the growth rate of Gross Domestic Products (GDP) in 1999 recorded as high as 10.7 percent. During this period, the Korean government has been working on restructuring of banks, enterprises, labour and public sectors. The major directions of government were; localization, reducing administrative manpower, limiting agricultural budgets, privatization of public enterprises, integration of agricultural organization, and easing of various regulations. Thus, the power of central government shifted to local government resulting in a power increase for city mayors and county chiefs. Agricultural extension services was one of targets of government restructuring, transferred to local governments from central government. At the same time, the number of extension offices was reduced by 64 percent, extension personnel reduced by 24 percent, and extension budgets reduced. During the process of restructuring, the basic direction of extension services was set by central Rural Development Administration Personnel management, technology development and supports were transferred to provincial Rural Development Administrations, and operational responsibilities transferred to city/county governments. Agricultural extension services at the local levels changed the name to Agricultural Technology Extension Center, established under jurisdiction of city mayor or county chief. The function of technology development works were added, at the same time reducing the number of educators for agriculture and rural life. As a result of observations of rural areas and agricultural extension services at various levels, functional responsibilities of extension were not well recognized throughout the central, provincial, and local levels. Central agricultural extension services should be more concerned about effective rural development by monitoring provincial and local level extension activities more throughly. At county level extension services, it may be desirable to add a research function to reflect local agricultural technological needs. Sometimes, adding administrative tasks for extension educators may be helpful far farmers. However, tasks such as inspection and investigation should be avoided, since it may hinder the effectiveness of extension educational activities. It appeared that major contents of the agricultural extension service in Korea were focused on saving agricultural materials, developing new agricultural technology, enhancing agricultural export, increasing production and establishing market oriented farming. However these kinds of efforts may lead to non-sustainable agriculture. It would be better to put more emphasis on sustainable agriculture in the future. Agricultural extension methods in Korea may be better classified into two approaches or functions; consultation function for advanced farmers and technology transfer or educational function for small farmers. Advanced farmers were more interested in technology and management information, while small farmers were more concerned about information for farm management directions and timely diffusion of agricultural technology information. Agricultural extension service should put more emphasis on small farmer groups and active participation of farmers in these groups. Providing information and moderate advice in selecting alternatives should be the major activities for consultation for advanced farmers, while problem solving processes may be the major educational function for small farmers. Systems such as internet and e-mail should be utilized for functions of information exchange. These activities may not be an easy task for decreased numbers of extension educators along with increased administrative tasks. It may be difficult to practice a one-to-one approach However group guidance may improve the task to a certain degree.

  • PDF