• Title/Summary/Keyword: 인장 케이블

Search Result 66, Processing Time 0.031 seconds

Tensile Strength on Connection Socket of Cables (케이블 연결 소켓의 인장강도)

  • Park, Kang-Geun;Lee, Jang-Bok;Ha, Chae-Won;Kim, Jae-Bong
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.37-42
    • /
    • 2008
  • Cable member in structure is tension systems in which the load carrying members transmit loads to support system by tensile stress with no compression or flexure allowed. Cable system have been widely used large span structure roof, air-supported structure, prestressed membrane, cable network roof, suspension structures, guyed tower, ocean platforms, suspension bridges. Cable member can transmit loads by the edge connected system such as socket, swaging, mechanical splice sleave, clip, wedge, loop splice etc. This study will shown an experimental results on the strength of connection socket of cables. In the results of experiment, most of cable connection specimen occurred the failure at the connection socket part before the cable arrived at tensile failure load.

  • PDF

Inelastic Nonlinear Analysis of Structures with Under -Tension System (언더텐션 시스템이 적용된 구조물의 비탄성 비선형 거동 해석)

  • Park, Duk-Kun;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.2
    • /
    • pp.91-97
    • /
    • 2009
  • This study presents geometric nonlinear and material analysis of under-tension structure using Total Lagrangian and Updated Lagrangian method. In the regard, the under-tension system enables the load of upper part to carry to the end of beam by pre-tensional force in cable. The under-tension system on lower part of the structure is applied in order to reduce the deflection and size of member. This study is performed with conforming of the effect by pretension value in the cable and applying loading. Dead and Live loads are supposed to apply nodal on the top member. The member force and deflection of the structure are with MIDAS and ADINA.

  • PDF

TENSILE STRENGTH TEST OF CABLE CLEAT SIMULATED ELECTROMAGNETIC FORCE UNDER MAXIMUM FAULT CONDITION OF EHV UNDERGROUND CABLE (초고압 지중 케이블 단락전자력을 감안한 케이블 클리트의 모의 인장 시험)

  • Kim, H.J.;Nam, J.S.;Song, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1467_1468
    • /
    • 2009
  • 지중 케이블의 고정 및 케이블 축력을 지지하는 목적으로 사용하는 케이블용 클리트는 실제로 여러 종류의 외력을 받으며, 이중 케이블 단락 사고시 발생하는 전자력이 가장 큰 영향을 미친다. 본 논문에서는 케이블 단락 사고시 발생 전자력을 계산하고 이 계산치를 바탕으로 클리트의 외력으로 모의하고, 이를 외력방향에 따라 인장시험을 통해 클리트 설계의 적절성을 확인하고자 한다.

  • PDF

A Study on Applicability of Wireless Impedance Sensor Nodes Technique for Tensile Force Monitoring of Structural Cables (구조용 케이블의 인장력 모니터링을 위한 무선 임피던스 센서노드 기술의 적용성에 관한 연구)

  • Park, Jae-Hyung;Hong, Dong-Soo;Kim, Jeong-Tae;Na, Won-Bae;Cho, Hyun-Man
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.21-31
    • /
    • 2010
  • In this study, a technique that uses wireless impedance sensor nodes is proposed to monitor tensile force of structural cable. To achieve this goal, the following approaches were implemented. First, a wireless impedance sensor node was designed for automated and cost-efficient prestress-loss monitoring. Second, an impedance-based algorithm was embedded in the wireless impedance sensor node for autonomous structural health monitoring of structural cables. Third, a tensile force monitoring technique that uses an interface plate for structural cables was proposed to overcome the limitations of the wireless impedance sensor node such as its narrow-band measurable frequency ranges. Finally, the applicability of the wireless impedance sensor node and the technique that uses the interface washer were evaluated in a lab-scaled prestressed concrete (PSC) girder model with internal and external tendons for which several prestress-loss scenarios were experimentally monitored with the wireless impedance sensor nodes.

Estimation of Cable Damages using Piezo Disk and Optical Fiber Sensors (압전소자와 광섬유센서를 이용한 케이블의 손상평가)

  • Park, Kang-Geun;Kim, Ie-Sung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.3
    • /
    • pp.67-74
    • /
    • 2009
  • Presently means of utilizing sensors such as Piezoelectric(PZT) Element for evaluating the affect of oscillator, strain gauge for analyzing physical changes and use of Fiber Bragg Grating(FBG) Sensor are widely practiced in the field. In this study, PZT and FBG sensors were used to tearing damage of cable systems in these sensors. Cable systems are a construction of elements carrying only tension and no compression or bending in membrane structure. But damage detection of cable systems by using existing safety diagnosis is difficult to detect the characteristic change of overall structural action. If cable snaps are occurred to cable release and tear in tension structures, these are set up a vibration. So, we used piezo-electric materials and result of experiment using this was compared with result of experiment using FBG sensors The purpose of this research is to develop of damage detection method of cable system in tensile stress.

  • PDF

The Development of Analysis Techniques of Extreme Tensions in a Snapping Cable - Parameter Studies - (스내핑 케이블의 극단장력의 해석기법 개발 -매개변수 연구-)

  • H. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.146-151
    • /
    • 1992
  • In this paper, extreme tensions in a snapping cable are studied and systematic parameter studies are made in the selected cable using the clipping-off model. The anticipation of incipient clipping frequencies of a cable are of use in giving an indication of the behavior of cables for marine applications in which large dynamic tension build-up in rough seas may cause the total tension to become negative.

  • PDF

Evaluation of Tension Force of Stay Cables Using Vibration Method (진동법을 이용한 인장 케이블의 장력 추정에 관한 연구)

  • Kim, Nam-Sik;Jeong, Woon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.12
    • /
    • pp.956-963
    • /
    • 2002
  • In a recent construction industry, cable supported structures such as a cable-stayed bridge or space stadium have been increasingly constructed according to rapidly upgrade their related technologies. Generally stay cables as a critical member need to be rearranged for being satisfied with design tension forces. In this purpose, a vibration method has been applied to estimate the tension forces exerted on existing stay cables. In this study, cable vibration tests were tarried out to evaluate the cable tension forces comparing with theoretical and practical formulas. Using the measured frequencies obtained from free vibration and Impulsive tests, an accuracy of the estimated tension forces is confirmed according to use the first single mode only or higher multiple modes.

Application of Vibration Method for Estimation of Tension Force of Stay Cables in World-Cup Stadiums (월드컵경기장 지지케이블의 장력추정을 위한 진동법의 적용성 평가)

  • Chang, Kug-Kwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.156-165
    • /
    • 2009
  • This study is to consider the character of cables in six World-Cup stadiums constructed in 2002 and to inspect problems on measurement natural frequencies interpretation and application of existing theory. The results of the experiment were shown that it was possible to determine the tension force of the real cables with an accuracy of 8% by taking the cable bending stiffness. But for the range of cable affected greatly by bending stiffness(${\xi}{\leq}7$), it was appeared the tendency to increase estimated error and was considered to need additional study of this range. Estimated tension error could not be improved so much in comparison to the case using single mode of vibration even through multiple modes of vibration were used.

Mechanical Performance Study of Flexible Protection Tube for Submarine Cables (해저케이블용 유연보호튜브의 기계적 성능 연구)

  • Kyeong Soo Ahn;Yun Jae Kim;Jin-wook Choe;Jinseok Lim;Sung Woong Choi
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.101-107
    • /
    • 2024
  • Demand for submarine cable is increasing due to advances in submarine power transmission technology and submarine cable manufacturing technology. Submarine cable use various types of protective equipment to prevent problems such as high maintenance costs in the event of cable damage and power outages during maintenance periods. Among them, flexible protection tube is a representative protective equipment to protect cables and respond to external forces such as waves and current. The flexible protection tube is made of polyurethane 85A hyperelastic material, so the calculation of mechanical behavior is carried out using mechanical properties based on experimental results. In this study, a study was conducted to determine the bending performance and tensile performance of flexible protection tube through analytical methods. The physical properties obtained through the multiaxial tensile test of polyurethane 85A were used for the analysis. Bending and tensile performance were determined for the maximum bending moment standard of 15 kN·m and the tensile load standard of 50 kN. As a result, it was confirmed that when the maximum bending moment of 15 kN·m of the flexible protection tube occurred, the bending performance of the MBR was secured at 13 m and when a tensile load of 50 kN, it was applied the maximum vertical displacement was 968 mm, confirming that the tensile performance was secured.

Optimization of Cable Stayed Bridges Considering Initial Cable Tension and Tower Coordinates (사장교의 초기인장력과 주탑좌표를 고려한 최적설계)

  • Kim, Kyung Seung;Kim, Moon Kyum;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.205-213
    • /
    • 1988
  • It is not a simple task to optimize a cable stayed bridge, because it involves, in addition to the section properties, number and arrangement of cables, initial tension forces of cables, and type and height of the tower as design variables. This study deals with an optimization problem of cable stayed bridges considering initial cable forces, section properties of the girder and the tower, and coordinates of the tower. In order to avoid difficulties in dealing with numerous variables which interact mutually, separate design spaces are adopted for initial cable forces, section properties, and coordinates, respectively. Strain energy stored in the structure is used as the object function in the design of the initial cable forces, while weight of the structure is used in the design of section and coordinates. Upper and lower limits of the initial forces, allowable stresses including the effect of buckling, and lower limit of the sectional area are considered as constraints. The proposed method is applied to a fan type bridge and a harp type bridge. It is believed through comparison of the results to the previous results in the literature that the proposed method renders rational design values. It is also shown that the coordinate optimization, which is usually deleted in the optimization process, results in additional saving of materials.

  • PDF