• Title/Summary/Keyword: 인식 단위

Search Result 1,048, Processing Time 0.022 seconds

Development of Continuous Spoken Digit Recognition System using Statistical Model (통계적 모델에 의한 연속 숫자음의 인식 기술개발)

  • Lee, G.S.;Ann, T.O.;Kim, S.H.
    • Annual Conference on Human and Language Technology
    • /
    • 1989.10a
    • /
    • pp.154-158
    • /
    • 1989
  • 본 연구는 통제적 모델에 의한 연속 숫자음의 인식에 관한 것으로 4 연속 숫자음을 인식 대상으로하여 실험한다. 시스템은 크게 음향 음성 처리부 및 어휘 해석부 두 부분으로 나뉜다. 음향 음성 처리부에서는 입력 음성으로부터 특정 벡터인 12차의 LPC cepstrum 계수를 구하여, 프레임 레이블링과 소음소 레이블링 (phone labelling)을 한다. 프레임 레이블링인 베이스 분류법을 이용하였으며, 소음소 레이블링은 프레임 레이블과 사후확률 (posteriori probability)로 부터 이루어 졌다. 어휘 해석부분에서는 소음소 단위를 입력으로 받아 음운규칙을 통해 작성된 소음소 망을 거쳐 연속 숫자음 출력을 얻도록 했다. 본실험은 화자 3 명이 발음한 35 개의 4 연속 숫자음을 인식 대상으로 하였으며, 4 연속 숫자음을 평가단위로 80%의 인식율을 얻었고, 각 숫자음의 음절을 단위로 95%의 인식율을 얻어 제시한 알고리즘의 유효성을 입증하였다.

  • PDF

Large Vocabulary Continuous Speech Recognition using Stochastic Pronunciatioin Lexicon Modeling (확률 발음사전을 이용한 대어휘 연속음성인식)

  • 윤성진
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.08a
    • /
    • pp.315-319
    • /
    • 1998
  • 대어휘 연속음성인식을 위한 확률 발음사전 모델에 대해서 제안하였다. 제안된 확률 발음 사전은 연속음성과 같은 자연스런 발성에서 자주 발생되는 단어의 변이를 확률적인 subword-state로 이루어진 HMM으로 모델화 함으로써 단어의 발음 변이를 효과적으로 표현할 수 있으며, 단위 인식 시스템의 성능을 보다 높일 수 있도록 구성되었다. 확률 발음사전의 생성은 음성 자료와 음소 모델을 이용하여 단어 단위의 분할과 학습을 통해서 자동으로 생성되게 됨 음소와 같은 언어학적인 단위뿐만 아니라 PLU 이나 비언어학적인 인식 모델을 이용한 연속음성인식기에도 적용이 가능하다.연속음성인식실험결과 확률 발음사전을 사용함으로써 표준 발음 표기를 사용하는 인식 시스템에 비해 단어 오류율은 39.8%, 문장 오류율은 24.4%의 큰 폭으로 오류율을 감소시킬 수 있었다.

  • PDF

Establishment of the ′Standard Hangul Phoneme into Character Conversion Rule′ (한국어 음가/ 한글 표기 변환을 위한 표준 규칙 제정)

  • 이계영;임재걸
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.128-132
    • /
    • 2002
  • 한글 표기를 음가로 변환하는 규칙을 역으로 적용하여 음가를 한글 표기로 전환시키는 표준 규칙을 고안하는 것이 본 연구의 목표다. 이러한 표준 규칙은 음성인식에 반드시 필요한 귀중한 자료가 된다. 음성 인식은 표준으로 기록된 음성의 패턴과 입력을 비교하여 가장 유사한 패턴을 찾는 방법을 사용한다. 이때 표준 음성 패턴이 띄어쓰기 단위라면 수백만 개의 표준 패턴이 수록되어야 한다. 이렇게 하면 표준 패턴을 위한 데이터베이스도 너무 커지고 비교회수도 너무 많아져서 실용화가 불가능하다. 그래서, 음절단위로 인식하는 것이 바람직하다. 음절단위로 인식하면 인식된 음가가 한글 표기 문법에 맞지 않으므로, 인식 결과를 출력할 때에는 음가를 그대로 출력하는 것이 아니라 한글표기로 변환하여 표기해야 한다 이때, 본 연구의 연구 결과인 표준규칙을 사용한다.

  • PDF

Difference State Number of CHMM Model to Improve the Performance of SCCRS (한국어 음성/문자 공용인식기의 성능향상을 위한 가변 상태수 CHMM모델의 구성)

  • Suk Soo-Young;Kim Min-Jung;Kim Kwang-Soo;Jung Ho-Youl;Chung Hyun-Yeol
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.95-98
    • /
    • 2002
  • 문자인식 또는 음성인식을 위해 사용되어지는 CHMM(Continuous Hidden Markov Model)모델은 일반적으로 모델의 상태수를 일정한 수로 고정하는 고정 상태수 모델 구조를 가지고 있으나, 이는 개별적인 인식 단위의 특성을 고려하지 않은 경우로써 이를 고려한 가변 상태수 모델을 사용할 경우 인식률 향상을 기대할 수 있다. 개별적인 인식 단위에 적합한 모델 상태수를 결정하는 방법으로 파라미터 히스토그램 방법과, BIC(Bayesian Information Criterion)방법을 사용하는 것이 대표적이다. 이들 방법들은 개별적인 인식단위의 우도값만을 향상시키기 위한 방법으로 전체인식률과 직접적으로 비례하지는 않는다. 따라서, 본 논문에서는 고정 상태수를 갖는 모델 적용 방법과 인식단위별 상태수 변화에 따른 인식률을 비교하였으며, 이를 바탕으로 각 모델별 상태수를 달리하는 가변 상태수 CHMM모델 구성 방법을 제안한다. 제안된 가변상태수 모델의 유효성을 확인하기 위해 음성/문자 공용인식기 중 필기체 문자 인식에 적용한 결과 제안한 LM(Local Maximum)으로 구성된 가변 상태수 모델이 MLE와 BIC로 구성된 모델과 인식률 면에서는 거의 동일한 성능을 유지하면서 전체 상태수는 MLE 모델에 비해 $31\%$, BIC로 구성된 모델에 비해 $22\%$ 감소를 나타내어 제안한 모델의 유효성을 확인할 수 있었다.

  • PDF

Performance Improvement of Continuous Digits Speech Recognition Using the Transformed Successive State Splitting and Demi-syllable Pair (반음절쌍과 변형된 연쇄 상태 분할을 이용한 연속 숫자 음 인식의 성능 향상)

  • Seo Eun-Kyoung;Choi Gab-Keun;Kim Soon-Hyob;Lee Soo-Jeong
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.1
    • /
    • pp.23-32
    • /
    • 2006
  • This paper describes the optimization of a language model and an acoustic model to improve speech recognition using Korean unit digits. Since the model is composed of a finite state network (FSN) with a disyllable, recognition errors of the language model were reduced by analyzing the grammatical features of Korean unit digits. Acoustic models utilize a demisyllable pair to decrease recognition errors caused by inaccurate division of a phone or monosyllable due to short pronunciation time and articulation. We have used the K-means clustering algorithm with the transformed successive state splitting in the feature level for the efficient modelling of feature of the recognition unit. As a result of experiments, 10.5% recognition rate is raised in the case of the proposed language model. The demi-syllable fair with an acoustic model increased 12.5% recognition rate and 1.5% recognition rate is improved in transformed successive state splitting.

  • PDF

Performance Improvement of Continuous Digits Speech Recognition using the Transformed Successive State Splitting and Demi-syllable pair (반음절쌍과 변형된 연쇄 상태 분할을 이용한 연속 숫자음 인식의 성능 향상)

  • Kim Dong-Ok;Park No-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.8
    • /
    • pp.1625-1631
    • /
    • 2005
  • This paper describes an optimization of a language model and an acoustic model that improve the ability of speech recognition with Korean nit digit. Recognition errors of the language model are decreasing by analysis of the grammatical feature of korean unit digits, and then is made up of fsn-node with a disyllable. Acoustic model make use of demi-syllable pair to decrease recognition errors by inaccuracy division of a phone, a syllable because of a monosyllable, a short pronunciation and an articulation. we have used the k-means clustering algorithm with the transformed successive state splining in feature level for the efficient modelling of the feature of recognition unit . As a result of experimentations, $10.5\%$ recognition rate is raised in the case of the proposed language model. The demi-syllable pair with an acoustic model increased $12.5\%$ recognition rate and $1.5\%$ recognition rate is improved in transformed successive state splitting.

Isolated Word Recognition Using Allophone Unit Hidden Markov Model (변이음 HMM을 이용한 고립단어 인식)

  • Lee, Gang-Sung;Kim, Soon-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.29-35
    • /
    • 1991
  • In this paper, we discuss the method of recognizing allophone unit isolated words using hidden Markov model(HMM). Frist we constructed allophone lexicon by extracting allophones from training data and by training allophone HMMs. And then to recognize isolated words using allophone HMMs, it is necessary to construct word dictionary which contains information of allophone sequence and inter-allophone transition probability. Allophone sequences are represented by allophone HMMs. To see the effects of inter-allophone transition probability and to determine optimal probabilities, we performend some experiments. And we showed that small number of traing data and simple train procedure is needed to train word HMMs of allophone sequences and that not less performance than word unit HMM is obtained.

  • PDF

Post-processing for Korean OCR Using Cohesive Feature between Syllables and Syntactic Lexical Feature (한국어의 음절 결합 특성 및 통사적 어휘 특성을 이용한 문자인식 후처리 시스템)

  • Hwang, Young-Sook;Park, Bong-Rae;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 1997.10a
    • /
    • pp.175-182
    • /
    • 1997
  • 지금까지의 한글 문자인식 후처리 연구분야에서 미등록어와 비문맥적 오류 문제는 아직까지 잘 해결하지 못하고 있는 문제이다. 본 논문에서는 단어로서 가능한지를 결정하는 기준으로 확률적 음절 결합 정보를 사용하여 형태소 분석 기법만을 사용했을 때 발생할 수 있는 미등록어 문제를 해결하고, 통사적 기능의 어말 어휘를 고려한 문맥 결합 정보를 이용함으로써 다수의 후보 어절 가운데에서 최적의 후보 어절을 선택하는 방법을 제안한다. 제안된 시스템은 인식기에서 내보낸 후보 음절과 학습된 혼동 음절을 조합하여 하나 이상의 후보 어절을 생성하는 모듈과 통계적 언어 정보를 이용하여 최적의 후보 어절을 선정하는 모듈로 구성되었다. 실험은 1000만 원시 코퍼스에서 추출한 음절 결합 정보와 17만 태깅된 코퍼스에서 추출한 어절 결합 정보를 사용하였으며, 실제 인식 결과에 적용한 결과 문자 단위에서는 94.1%의 인식률을 97.4%로, 어절 단위에서는 87.6%를 96.6%로 향상시켰다. 교정률과 오교정률은 각각 문자 단위에서 56%와 0.6%, 어절 단위에서 83.9%와 1.66%를 보였으며, 전체 실험 어절의 3.4%를 차지한 미등록어 중 87.5%를 올바로 인식하는 한편, 전체 오류의 20.3%인 비문맥 오류에 대해서 91.6%를 올바로 교정하는 후처리 성능을 보였다.

  • PDF

Morphological Analysis of Spoken Korean Based on Pseudo-Morphemes (의사 형태소 단위의 음성언어 형태소 해석)

  • Lee, Kyong-Nim;Chung, Min-Hwa
    • Annual Conference on Human and Language Technology
    • /
    • 1998.10c
    • /
    • pp.396-404
    • /
    • 1998
  • 본 논문에서는 언어학적 단위인 형태소의 특성을 유지하면서 음성인식 과정에 적합한 분리 기준의 새로운 디코딩 단위인 의사형태소(Pseudo-Morpheme)를 정의 하였다. 이러한 필요성을 확인하기 위해 새로이 정의된 40개의 품사 태그를 갖는 의사 형태소를 표제어 단위로 삼아 발음사전 생성과 형태소 해석에 초점을 두고 한국어 연속음성 인식 시스템을 구성하였다.

  • PDF

A Method of Machine-Printed Hangul Recognition using Character and Combined-Grapheme Recognizers (낱자 인식기와 자소 조합 인식기를 혼용한 인쇄체 한글 인식방법)

  • 장승익;임길택;김호연;정선화;남윤석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.244-246
    • /
    • 2003
  • 본 논문에서는 낱자 인식기와 자소 조합 인식기를 혼용한 저품질 인쇄체 한글의 고성능 인식 방법을 제안하였다. 제안한 방법에서는 입력 문자를 한글 6형식과 기타 형식의 문자, 총 7종으로 분류한, 입력문자를 인식 대상 문자의 수와 자소 복잡도에 따라 하나 또는 두 개의 인식 단위(HRU: Hangul recognition unit)로 분리하여 인식한다. 각 인식 단위 영상에서 추출한 방향각 특징을 다층신경망 인식기를 이용하여 인식한다. 다음으로, 각 다층신경망 인식기의 신뢰도를 조합하여 최종 인식 결과를 도출한다. 제안한 방법을 사용한 실험에서 98.80%의 인식률을 얻을 수 있었으며, 이는 기존 방법에 비해 23.61%의 오류가 감소한 것이다.

  • PDF