• Title/Summary/Keyword: 인솔 재질

Search Result 3, Processing Time 0.017 seconds

The Effect of Cushion Insole on the Flexibility and Exercise Ability of Lumbar Spinal Stenosis (쿠션인솔이 요추 척추관협착증 환자의 유연성 및 운동능력에 미치는 영향)

  • Kim, Hyun Taeg;Moon, Sang Ho;Kim, Kyung Chul;Kwon, Byong An
    • Journal of Digital Convergence
    • /
    • v.17 no.1
    • /
    • pp.423-432
    • /
    • 2019
  • The purpose of this study was to investigate the effect of cushion insole on lumbar flexibility and motor fitness in patients with lumbar spinal stenosis. 26 patients with lumbar spinal stenosis were randomly assigned to the experimental group 13 and the control group 13. Volunteers were allowed to wear cushioned insoles for two hours a day for six weeks. The experimental group was 8 mm and the control group was 4 mm, wearing a cushion insole as a blinded experiment. There was a significant increase(p<0.05) in the flexion test of the experimental group ($3.38{\pm}3.12$), but not statistically significant in the other tests(p>0.05). In conclusion, cushion insole was not suitable for intervention for lumbar spinal stenosis. There is a need to study the height and material of the insoles in the future.

Analyzing the Effect of Insole Materials on Vibration and Noise Reduction between Floors (층간소음 방지를 위한 인솔 재질별 진동 및 소음 평가)

  • Seungnam Min;Heeran Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.1
    • /
    • pp.110-122
    • /
    • 2023
  • The COVID-19 pandemic increased people's time at home and caused an 80% increase in noise disputes between floors. The purpose of this study is to propose suitable materials for making indoor shoes (insoles) to minimize noise between floors. Subjects without back pain and leg-related disease (e.g. arthritis, etc.) from three different age groups (childhood, adolescence, and adulthood) were recruited for the study. Five polymer insole materials were considered: Chloroprene Rubber (CR foam), Ethylene Propylene Diene Monomer (EPDM foam), Natural Latex foam, Ethylene Vinyl Acetate (EVA foam), and Polyurethane (PU foam). From these materials, 20 combinations were prepared and randomly tested for noise and vibration. The results revealed a significant difference in noise and vibration levels based on the type of material used and the age of the subject. Nevertheless, all materials under consideration successfully reduced noise and vibration; in particular, type A-C greatly decreased. The CR foam material was especially effective at noise and vibration reduction (p<.01). This study suggests that adding insoles into socks that children wear at home could reduce noise vibration and disputes between floors.

The Effects of the Height and the Quality of the Material of Popular Heel-up Insole on the Mean Plantar Foot Pressure during Walking (보행시 보급형 키 높이 인솔의 높이와 재질이 평균 족저압에 미치는 영향)

  • Lee, Joong-Sook;Kim, Doo-Hwan;Jung, Bu-Won;Han, Dong-Wook;Park, Don-Mog
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.479-486
    • /
    • 2011
  • This study determined the effects of the height and the quality of the material of popular heel-up insole on mean plantar foot pressure during walking. Seven healthy college students who are studying at S university in Busan were as participants in this study. After sufficiently explaining about the research to the subjects before the experiment, mean plantar foot pressures were examined using F-Scan Pressure Measure System 5.23 for the gait with shoes inserted insole and the data were compared among the height and the quality of material of insoles. In the result, there was a difference significantly in the mean plantar foot pressure followed the height of insoles both left and right. Especially, mean plantar foot pressure in left indicated significantly lower in 3 cm and 5 cm insoles than in 0 cm and 1 cm insoles. Also mean plantar foot pressure in right showed significantly lower in 3 cm and 5 cm insoles than in 0 cm, and indicated significantly lower in 5 cm insoles than in 1 cm and 3 cm insoles. The mean plantar foot pressure followed the quality of the material of insoles were different significantly. In left, the mean plantar foot pressure of urethane poly-acetyl insole was lower significantly than urethane poly-acetyl inserted air insole, power-gel insole and jelly insole. And the mean plantar foot pressure of urethane poly-acetyl insole was lower significantly than power-gel insole and jelly insole in right. We showed that 3 cm and 5 cm insoles in the height of insoles and Urethane poly-acetyl insole in the quality of material were suitable to reduce a fatigue which is felt in plantar foot during the walking.