• Title/Summary/Keyword: 인과 관계 추론

Search Result 164, Processing Time 0.027 seconds

Fuzzy Cognitive Map-Based A, pp.oach to Causal Knowledge Base Construction and Bi-Directional Inference Method -A, pp.ications to Stock Market Analysis- (퍼지인식도에 기초한 인과관계 지식베이스 구축과 양방향 추론방식에 관한 연구 -주식시장 분석에의 적용을 중심으로-)

  • 이건창;주석진;김현수
    • Journal of Intelligence and Information Systems
    • /
    • v.1 no.1
    • /
    • pp.1-22
    • /
    • 1995
  • 본 연구에서 퍼지인식도(Fuzzy Cognitive Map) 개념을 기초로 하여 (1) 특정 문제영역에 대한 전문가의 인과관계 지식(causal knowledge)을 추출하는 알고리즘을 제시하고, (2) 이 알고리즘에 기초하여 작성된 해당 문제영역에 대한 여러 전문가들의 인과관계 지식을 계층별로 분해하여, (3) 해당 계층간의 양방향 추론이 가능한 추론메카니즘을 제시하고자 한다. 특정 문제영역에 있어서의 인과관계 지식이란 해당 문제를 구성하는 여러 개념간에 존재하는 인과관계를 표현한 지식을 의미한다. 이러한 인과관계 지식은 기존의 IF-THEN 형태의 규칙과는 달리 행렬형태로 표현되기 때문에 수학적인 연산이 가능하다. 특정 문제영역에 대한 전문가의 인과관계 지식을 추출하는 알고리즘은 집합연산에 의거하여 개발되었으며, 특히 상반된 의견을 보이는 전문가들의 의견을 통합하여 하나의 통합된 인과관계 지식베이스를 구축하는데 유용하다. 그러나, 주어진 문제가 복잡하여 다양한 개념들이 수반되면, 자연히 인과관계 지식베이스의 규모도 커지게 되므로 이를 다루는데 비효율성이 개재되기 마련이다. 따라서 이러한 비효율성을 해소하기 위하여 주어진 문제를 여러계측(Hierarchy)으로 분해하여, 해당 계층별로 인과관계 지식베이스를 구축하고 각 계층별 인과관계 지식베이스를 연결하여 추론하는 메카니즘을 개발하면 효과적인 추론이 가능하다. 이러한 계층별 분해는 행렬의 분해와 같은 개념으로도 이해될 수 있다는 특징이 있어 그 연산이 간단명료하다는 장점이 있다. 이와같이 분해된 인과관계 지식베이스는 계층간의 추론메카니즘을 통하여 서로 연결된다. 이를 위하여 본 연구에서는 상향 또는 하향방식이 추론이 가능한 양방향 추론방식을 제시하여 주식시장에서의 투자분석 문제에 적용하여 그 효율성을 검증하였다.

  • PDF

Category-Based Feature Inference: Testing Causal Strength (범주기반 속성추론: 인과관계 강도의 검증)

  • JunHyoung Jo;Hyung-Chul O. Li;ShinWoo Kim
    • Science of Emotion and Sensibility
    • /
    • v.26 no.1
    • /
    • pp.55-64
    • /
    • 2023
  • This research investigated category-based feature inference when category features were connected in common cause and common effect causal networks. Previous studies that tested feature inference in causal categories showed unique inference patterns depending on causal direction, number of related features, whether the to-be-inferred feature was cause or effect, etc. However, these prior studies primarily focused on inference pattens that arise from causal relations, and few studies directly explored how the effects of causal relations vary depending on causal strength. We tested feature inference in common cause (Expt. 1) and common effect (Expt. 2) causal categories when casual strengths were either strong or weak. To this end, we had participants learn causal categories where features were causally linked and then perform feature inference task. The results showed that causal strengths as well as causal relations had important impacts on feature inference. When causal strength was strong, inference for common cause feature became weaker but that for the common effect feature became stronger. Moreover, when causal strength was strong and common cause was present, inference for the effect features became stronger, whereas the results were reversed in common effect networks. In particular, in common effect networks, casual discounting was more evident with strong causal strength. These results consistently demonstrate that participants consider not only causal relations but also causal strength in feature inference of causal categories.

SSQUSAR : A Large-Scale Qualitative Spatial Reasoner Using Apache Spark SQL (SSQUSAR : Apache Spark SQL을 이용한 대용량 정성 공간 추론기)

  • Kim, Jonghoon;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.2
    • /
    • pp.103-116
    • /
    • 2017
  • In this paper, we present the design and implementation of a large-scale qualitative spatial reasoner, which can derive new qualitative spatial knowledge representing both topological and directional relationships between two arbitrary spatial objects in efficient way using Aparch Spark SQL. Apache Spark SQL is well known as a distributed parallel programming environment which provides both efficient join operations and query processing functions over a variety of data in Hadoop cluster computer systems. In our spatial reasoner, the overall reasoning process is divided into 6 jobs such as knowledge encoding, inverse reasoning, equal reasoning, transitive reasoning, relation refining, knowledge decoding, and then the execution order over the reasoning jobs is determined in consideration of both logical causal relationships and computational efficiency. The knowledge encoding job reduces the size of knowledge base to reason over by transforming the input knowledge of XML/RDF form into one of more precise form. Repeat of the transitive reasoning job and the relation refining job usually consumes most of computational time and storage for the overall reasoning process. In order to improve the jobs, our reasoner finds out the minimal disjunctive relations for qualitative spatial reasoning, and then, based upon them, it not only reduces the composition table to be used for the transitive reasoning job, but also optimizes the relation refining job. Through experiments using a large-scale benchmarking spatial knowledge base, the proposed reasoner showed high performance and scalability.

정상적 모델에 기초한 비교분석 기법의 개발

  • Kim, Hyeon-Gyeong
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.497-499
    • /
    • 2005
  • 정성적 추론은 자연 세계에 대한 정성적, 직관적인 지식을 밝혀내어 코드화하는 목표를 갖고 연구되어왔다. 정성적 추론은 전자, 기계 등의 도메인에서 성공적으로 사용되어 그 실효성을 입증할 수 있었으나, 대부분의 추론은 시뮬레이션에 집중되어 왔다. 본 연구에서는 주어진 상황에서 변화가 발생했을 때, 이 변화가 어떻게 영향을 미치며 파급되는지를 예측할 수 있는 정성적 비교분석 기법을 소개하고지 한다. 주어진 상황에 대한 인과모델이 정성적 분야 모델로부터 형성되고 여기에 비교분석 추론 기법을 적용하여 변화의 연쇄적인 인과 관계를 추적하게 된다. 이러한 기법은 변화의 예측 뿐 아니라, 이런 변화를 이끌어낸 인과 관계를 설명하는 기능을 제공하게 되어, 디자인, 진단, 지능형 교육 시스템, 환경 영향평가 등에 이용되리라 기대된다.

  • PDF

An Improved Fuzzy Cognitive Map with Fuzzy Causal Relationships and Fuzzy Partially Causal Realtionships (퍼지 인과관계와 퍼지 부분인과관계를 적용한 개선된 퍼지 인식도(Fuzzy Cognitive Map)에 관한 연구)

  • 김현수;이건창
    • Journal of Intelligence and Information Systems
    • /
    • v.1 no.2
    • /
    • pp.33-55
    • /
    • 1995
  • 포지인식도(Fuzzy Cognitive Map : FCM)는 추상적이고 비구조적이며 동적인 응용영역에서 전문가의 인과관계 지식(causal knowledge)을 표현하는데 매우 유용한 도구이다. FCM이 기존의 다른 네트워크 형태의 지식표현방법과 다른 차이점은 대상 문제의 개념변수들을 퍼지집합으로 묘사하고, 개념 변수간의 관계를 퍼지 인과관계로 다룬다는 것이다. 그런데 FCM의 특성이 아직 충분히 논의되지 않은 상태에서는 FCM의 적용에 있어 오류가 일어날 수 있다. 본 논문의 목적은 첫째, FCM의 특성과 의미를 보다 명확히 하여 이론적인 측면을 보강하고자 한다. 이를 위해 논리적관계(implication)와는 다른 인과관계의 정의를 다시 확인하고, 이정의에 기초한 퍼지 인과관계의 특성을 파악하고, 퍼지 인과관계와 대비되는 퍼지 부분인과관계 및 단방향 개념변수를 새로이 정의함으로써 FCM구축에 있어 잘못된 이해가 없게 하며, 둘째, FCM에서는 추론 방식이 갖추어야 할 원칙을 명시하고 이에 따라 이러한 원칙을 준수하는 새로운 추론 방식을 제시한다.

  • PDF

Fuzzy Cognitive Map and Bayesian Belief Network for Causal Knowledge Engineering: A Comparative Study (인과관계 지식 모델링을 위한 퍼지인식도와 베이지안 신뢰 네트워크의 비교 연구)

  • Cheah, Wooi-Ping;Kim, Kyoung-Yun;Yang, Hyung-Jeong;Kim, Soo-Hyung;Kim, Jeong-Sik
    • The KIPS Transactions:PartB
    • /
    • v.15B no.2
    • /
    • pp.147-158
    • /
    • 2008
  • Fuzzy Cognitive Map (FCM) and Bayesian Belief Network (BBN) are two major frameworks for modeling, representing and reasoning about causal knowledge. Despite their extensive use in causal knowledge engineering, there is no reported work which compares their respective roles. This paper aims to fill the gap by providing a qualitative comparison of the two frameworks through a systematic analysis based on some inherent features of the frameworks. We proposed a set of comparison criteria which covers the entire process of causal knowledge engineering, including modeling, representation, and reasoning. These criteria are usability, expressiveness, reasoning capability, formality, and soundness. The results of comparison have revealed some important facts about the characteristics of FCM and BBN, which will help to determine how FCM and BBN should be used, with respect to each other, in causal knowledge engineering.

Definition and Extraction of Causal Relations for Question-Answering on Fault-Diagnosis of Electronic Devices (전자장비 고장진단 질의응답을 위한 인과관계 정의 및 추출)

  • Lee, Sheen-Mok;Shin, Ji-Ae
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.5
    • /
    • pp.335-346
    • /
    • 2008
  • Causal relations in ontology should be defined based on the inference types necessary to solve problems specific to application as well as domain. In this paper, we present a model to define and extract causal relations for application ontology for Question-Answering (QA) on fault-diagnosis of electronic devices. Causal categories are defined by analyzing generic patterns of QA application; the relations between concepts in the corpus belonging to the causal categories are defined as causal relations. Instances of casual relations are extracted using lexical patterns in the concept definitions of domain, and extended incrementally with information from thesaurus. On the evaluation by domain specialists, our model shows precision of 92.3% in classification of relations and precision of 80.7% in identifying causal relations at the extraction phase.

Causal inference from nonrandomized data: key concepts and recent trends (비실험 자료로부터의 인과 추론: 핵심 개념과 최근 동향)

  • Choi, Young-Geun;Yu, Donghyeon
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.2
    • /
    • pp.173-185
    • /
    • 2019
  • Causal questions are prevalent in scientific research, for example, how effective a treatment was for preventing an infectious disease, how much a policy increased utility, or which advertisement would give the highest click rate for a given customer. Causal inference theory in statistics interprets those questions as inferring the effect of a given intervention (treatment or policy) in the data generating process. Causal inference has been used in medicine, public health, and economics; in addition, it has received recent attention as a tool for data-driven decision making processes. Many recent datasets are observational, rather than experimental, which makes the causal inference theory more complex. This review introduces key concepts and recent trends of statistical causal inference in observational studies. We first introduce the Neyman-Rubin's potential outcome framework to formularize from causal questions to average treatment effects as well as discuss popular methods to estimate treatment effects such as propensity score approaches and regression approaches. For recent trends, we briefly discuss (1) conditional (heterogeneous) treatment effects and machine learning-based approaches, (2) curse of dimensionality on the estimation of treatment effect and its remedies, and (3) Pearl's structural causal model to deal with more complex causal relationships and its connection to the Neyman-Rubin's potential outcome model.

ABox Reasoning with Relational Databases (관계형 데이터베이스 기반 ABox Reasoning)

  • Khandelwal, Ankesh;Bisai, Summit;Kim, Ju-Ri;Lee, Hyun-Chang;Han, Sung-Kook
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2009.05a
    • /
    • pp.353-356
    • /
    • 2009
  • OWL 온톨로지의 확장 가능한(scalable) 추론(reasoning)에 대한 접근 방법으로 SQL로 구축된 논리 규칙을 관계형 데이터베이스에 저장되어있는 개체(individual)에 대한 사실(facts)과 공리(axioms)들에 적용하는 것이다. 예로서 미네르바(Minerva)는 서술 논리 프로그램(Description Logic Program, DLP)을 적용함으로써 ABox 추론을 수행한다. 본 연구에서는 관계형 데이터베이스를 기반으로 추론을 시도하며, 대규모 논리 규칙 집합을 사용한 추론을 시도한다. 뿐만 아니라, 특정 클래스에 속한 익명(anonymous)의 개체들과 개체들의 묵시적(implicit)인 관계성 추론을 시도하며, 필요한 경우 새로운 개체를 생성함으로써 명시화하여 추론을 시도한다. 더욱이, 추론의 논리 패러다임(paradigm)에서부터 데이터베이스 패러다임에 이르기까지 변화 시켜가면서 카디널리티(cardinality) 제약을 만족하는 개체들에 대한 제약적인 추정 추론을 시도하며, 벤치마크 테스트 결과 향상된 추론 능력을 얻을 수 있음을 보인다.

  • PDF

A Fuzzy Cognitive Map Reasoning Model for Landmarks Detection on Mobile Devices (모바일 장치 상에서의 특이성 탐지를 위한 FCM 추론 모델)

  • Kim, Jeong-Sik;Shin, Hyoung-Wook;Yang, Hyung-Jung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.291-292
    • /
    • 2009
  • 모바일 장치에서 얻을 수 있는 정보는 의미 있는 다양한 개인 정보를 가지고 있다. 본 논문에서는 모바일 장치에서 얻을 수 있는 정보를 분석하여 특이성을 추론하는 방법을 제안한다. 특이성 추론 방법으로 인과관계의 지식을 모델링하고 표현하며 추론하는 주요 형식화 방법의 하나인 FCM(Fuzzy Cognitive Map)을 사용하였다. 제안된 방법은 모바일 장치에서 얻은 정보와 추론된 특이성을 개념노드로 이용하여 새로운 특이성을 추론하며, 개념노드간의 인과관계를 효율적으로 표현한다.