Abstract
Causal relations in ontology should be defined based on the inference types necessary to solve problems specific to application as well as domain. In this paper, we present a model to define and extract causal relations for application ontology for Question-Answering (QA) on fault-diagnosis of electronic devices. Causal categories are defined by analyzing generic patterns of QA application; the relations between concepts in the corpus belonging to the causal categories are defined as causal relations. Instances of casual relations are extracted using lexical patterns in the concept definitions of domain, and extended incrementally with information from thesaurus. On the evaluation by domain specialists, our model shows precision of 92.3% in classification of relations and precision of 80.7% in identifying causal relations at the extraction phase.
온톨로지의 인과관계는 특정 응용을 위한 추론에서 중요한 역할을 하므로, 인과관계는 응용에서 쓰이는 추론의 형태에 근거하여 정의되어야 한다. 본 논문에서는, 전자장비의 고장진단 질의응답을 위한 온톨로지에서의 인과관계를 정의하고 추출하는 모델을 제시한다. 질의응답의 패턴을 분석하여 인과범주를 정의하고, 질의응답에서 나타나는 개념들 사이의 관계들 중 인과범주에 속하는 경우를 인과관계로 정의한다. 인과관계 인스턴스는 응용분야의 정의문으로부터 어휘 패턴을 이용하여 추출되고 시소러스 정보를 이용하여 점진적으로 확장된다. 분야 전문가들의 평가 결과, 본 모델은 관계분류에 있어서 92.3%의 평균 정확률과 추출 단계의 인과관계 인식에 있어서 80.7%의 정확률을 보인다.