• Title/Summary/Keyword: 인공 지능 신경망

Search Result 598, Processing Time 0.028 seconds

Autoencoder-Based Defense Technique against One-Pixel Adversarial Attacks in Image Classification (이미지 분류를 위한 오토인코더 기반 One-Pixel 적대적 공격 방어기법)

  • Jeong-hyun Sim;Hyun-min Song
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.1087-1098
    • /
    • 2023
  • The rapid advancement of artificial intelligence (AI) technology has led to its proactive utilization across various fields. However, this widespread adoption of AI-based systems has raised concerns about the increasing threat of attacks on these systems. In particular, deep neural networks, commonly used in deep learning, have been found vulnerable to adversarial attacks that intentionally manipulate input data to induce model errors. In this study, we propose a method to protect image classification models from visually imperceptible One-Pixel attacks, where only a single pixel is altered in an image. The proposed defense technique utilizes an autoencoder model to remove potential threat elements from input images before forwarding them to the classification model. Experimental results, using the CIFAR-10 dataset, demonstrate that the autoencoder-based defense approach significantly improves the robustness of pretrained image classification models against One-Pixel attacks, with an average defense rate enhancement of 81.2%, all without the need for modifications to the existing models.

DNA (Data, Network, AI) Based Intelligent Information Technology (DNA (Data, Network, AI) 기반 지능형 정보 기술)

  • Youn, Joosang;Han, Youn-Hee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.11
    • /
    • pp.247-249
    • /
    • 2020
  • In the era of the 4th industrial revolution, the demand for convergence between ICT technologies is increasing in various fields. Accordingly, a new term that combines data, network, and artificial intelligence technology, DNA (Data, Network, AI) is in use. and has recently become a hot topic. DNA has various potential technology to be able to develop intelligent application in the real world. Therefore, this paper introduces the reviewed papers on the service image placement mechanism based on the logical fog network, the mobility support scheme based on machine learning for Industrial wireless sensor network, the prediction of the following BCI performance by means of spectral EEG characteristics, the warning classification method based on artificial neural network using topics of source code and natural language processing model for data visualization interaction with chatbot, related on DNA technology.

Design of Network Attack Detection and Response Scheme based on Artificial Immune System in WDM Networks (WDM 망에서 인공면역체계 기반의 네트워크 공격 탐지 제어 모델 및 대응 기법 설계)

  • Yoo, Kyung-Min;Yang, Won-Hyuk;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4B
    • /
    • pp.566-575
    • /
    • 2010
  • In recent, artificial immune system has become an important research direction in the anomaly detection of networks. The conventional artificial immune systems are usually based on the negative selection that is one of the computational models of self/nonself discrimination. A main problem with self and non-self discrimination is the determination of the frontier between self and non-self. It causes false positive and false negative which are wrong detections. Therefore, additional functions are needed in order to detect potential anomaly while identifying abnormal behavior from analogous symptoms. In this paper, we design novel network attack detection and response schemes based on artificial immune system, and evaluate the performance of the proposed schemes. We firstly generate detector set and design detection and response modules through adopting the interaction between dendritic cells and T-cells. With the sequence of buffer occupancy, a set of detectors is generated by negative selection. The detection module detects the network anomaly with a set of detectors and generates alarm signal to the response module. In order to reduce wrong detections, we also utilize the fuzzy number theory that infers the degree of threat. The degree of threat is calculated by monitoring the number of alarm signals and the intensity of alarm occurrence. The response module sends the control signal to attackers to limit the attack traffic.

A Study on the Hull Form Optimization Using Parallel-Distributed Genetic Algorithm (병렬분산 유전자 알고리즘을 이용한 선형 최적화에 관한 연구)

  • Cho, Min-Cheol;Park, Je-Woong;Kim, Yun-Young
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.47-52
    • /
    • 2003
  • 지금까지의 선형 최적화에 대한 연구는 고전적인 최적화 기법인 비선형계획법과 유동해석법을 중심으로 생물의 진화 알고리즘을 바탕으로 한 유전자 알고리즘과 인공지능에 기초를 둔 신경망이론 등이 이용되어 왔다. 또한 최근 컴퓨터의 성능이 급속도로 향상됨에 따라 전산유체역학에 기초한 시뮬레이션 평가기법도 사용되고 있다. 본 논문에서는 유전자 알고리즘을 이용한 선형 최적화 방법을 제시하였다. 그리고 광역 최적해의 효과적인 검색과 빠른 접근을 위한 방법으로 네트워크 시스템을 기반으로 한 병렬분산 유전자 알고리즘 시스템(PDGAS)을 개발하였으며 그 성능을 기존의 진화 알고리즘과 비교${\cdot}$분석함으로써 선형 최적화의 가능성을 확인하였다.

  • PDF

Empirical Evaluation of Ensemble Approach for Diagnostic Knowledge Management (진단지식관리를 위한 앙상블 기법의 실증적 평가)

  • Ha, Sung-Ho;Zhang, Zhen-Yu
    • The Journal of Information Systems
    • /
    • v.20 no.3
    • /
    • pp.237-255
    • /
    • 2011
  • 지난 수십 년 간 연구자들은 효과적인 진료지원시스템을 개발하기 위해 다양한 도구와 방법론들을 제안하였고 지금도 새로운 방법론과 도구들을 계속적으로 개발하고 있다. 그 중에서 흉통으로 응급실에 내원한 노인환자에 대한 정확한 진단은 중요한 이슈 중의 하나였다. 따라서 많은 연구자들이 의사의 진단 능력을 향상시키기 위한 지능적인 의료의사결정과 시스템 개발에 투신하고 있지만 전통적인 의료시스템에 따른 대부분의 진료의사결정이 단일 분류기(classifier)에 기반하고 있어 만족스런 성능을 보여주지 못하고 있는 것이 현실이다. 따라서 이 논문은 앙상블 전략을 활용하여 의사들이 노인환자들의 흉통을 더 정확하고 빠르게 진단하는데 있어 도움을 줄 수 있게 하였다. 의사결정나무, 인공신경망, SVM 모델을 결합한 앙상블 기법을 실제 응급실에서 수집한 응급실 자료에 적용하였고, 그 결과 단일 분류기를 사용하는 것에 비해 월등히 향상된 진단 성과를 보이는 것을 관찰 할 수 있었다.

Synergism of Knowledge-Based Decision Support Systems and Neural Networks to Design an Intelligent Strategic Planning System (지능적 전략계획시스템 설계를 위한 지식기초 의사결정지원체제와 인공신경망과의 결합)

  • Lee, Geon-Chang
    • Asia pacific journal of information systems
    • /
    • v.2 no.1
    • /
    • pp.35-56
    • /
    • 1992
  • This paper proposes a synergism of neural networks (NN) and knowledge-based decision support system (KBDSS) to effectively design an intelligent strategic planning system. Since conventional KBDSS becomes inoperative partially or totally when problem deviates slightly from the expected problem-domain, a new DSS concept is needed for designing an effective strategic planning system, where strategic planning environment is usually turbulent and consistently changing. In line with this idea, this paper developes a NN-based DSS, named ConDSS, incorporating the generalization property of NN into its knowledge base. The proposed ConDSS was extensively operated in an experimentally designed environment with three models: BCG matrix, Growth/Gain matrix, and GE matrix. The results proved very promising when encountered with unforeseen situations in comparisons with conventional KBDSS.

  • PDF

The Study for Railway Tourism System using Artificial Neural Network and Intelligent agent (인공신경망과 지능형 에이전트를 이용한 철도관광 시스템에 대한 연구)

  • Jung, Gwi-Im;Park, Sang-Sung;Jang, Dong-Sik
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1948-1953
    • /
    • 2007
  • Intelligent agent is to decide what customers need on the internet and offer them accurate information. In this paper, the system which can recommend the tourism items in terms of customer's needs is proposed by appling the intelligent agent to railway tourism system. Most of previous agents are focused on price. But, this study proposes the Railway tourism system which offers each customer the best suitable information based on quality of information and reputation. The customer's needs are analyzed through intelligent agent and the information which is suitable for customer's needs is obtained the Artificial Neural Network Model.

  • PDF

A Study on Development of Sound Quality Index of a Refrigerator Based on Human Sensibility Engineering (인공지능망을 이용한 냉장고 정상 가동 운전 상태의 음질 인덱스 개발)

  • 구진회;김중래;이은영;이상권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.991-996
    • /
    • 2004
  • The international competition in refrigerator markets has continuously required the research for sound quality of a refrigerator to improve the quality of a life. In this paper, A new method for evaluation of the sound quality of a refrigerator is developed based on human sensibility engineering by using ANN(Artificial neural network). Finally it is applied to evaluate the sound qualify of refrigerator on the production line.

  • PDF

Distributed Neural Network Optimization Study using Adaptive Approach for Multi-Agent Collaborative Learning Application (다중 에이전트 협력학습 응용을 위한 적응적 접근법을 이용한 분산신경망 최적화 연구)

  • Junhak Yun;Sanghun Jeon;Yong-Ju Lee
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.442-445
    • /
    • 2023
  • 최근 딥러닝 및 로봇기술의 발전으로 인해 대량의 데이터를 빠르게 수집하고 처리하는 연구 분야들로 확대되었다. 이와 관련된 한 가지 분야로써 다중 로봇을 이용한 분산학습 연구가 있으며, 이는 단일 에이전트를 이용할 때보다 대량의 데이터를 빠르게 수집 및 처리하는데 용이하다. 본 연구에서는 기존 Distributed Neural Network Optimization (DiNNO) 알고리즘에서 제안한 정적 분산 학습방법과 달리 단계적 분산학습 방법을 새롭게 제안하였으며, 모델 성능을 향상시키기 위해 원시 변수를 근사하는 단계수를 상수로 고정하는 기존의 방식에서 통신회차가 늘어남에 따라 점진적으로 근사 횟수를 높이는 방법을 고안하여 새로운 알고리즘을 제안하였다. 기존 알고리즘과 제안된 알고리즘의 정성 및 정량적 성능 평가를 수행하기 MNIST 분류와 2 차원 평면도 지도화 실험을 수행하였으며, 그 결과 제안된 알고리즘이 기존 DiNNO 알고리즘보다 동일한 통신회차에서 높은 정확도를 보임과 함께 전역 최적점으로 빠르게 수렴하는 것을 입증하였다.

Estimation of Weld Bead Shape and the Compensation of Welding Parameters using a hybrid intelligent System (하이브리드 지능시스템을 이용한 용접 파라메타 보상과 용접형상 평가에 관한 연구)

  • Kim Gwan-Hyung;Kang Sung-In
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.6
    • /
    • pp.1379-1386
    • /
    • 2005
  • For efficient welding it is necessary to maintain stability of the welding process and control the shape of the welding bead. The welding quality can be controlled by monitoring important parameters, such as, the Arc Voltage, Welding Current and Welding Speed during the welding process. Welding systems use either a vision sensor or an Arc sensor, both of which are unable to control these parameters directly. Therefore, it is difficult to obtain necessary bead geometry without automatically controlling the welding parameters through the sensors. In this paper we propose a novel approach using fuzzy logic and neural networks for improving welding qualify and maintaining the desired weld bead shape. Through experiments we demonstrate that the proposed system can be used for real welding processes. The results demonstrate that the system can efficiently estimate the weld bead shape and remove the welding detects.