• Title/Summary/Keyword: 인공 지능 신경망

Search Result 598, Processing Time 0.034 seconds

Face Recognition Network using gradCAM (gradCam을 사용한 얼굴인식 신경망)

  • Chan Hyung Baek;Kwon Jihun;Ho Yub Jung
    • Smart Media Journal
    • /
    • v.12 no.2
    • /
    • pp.9-14
    • /
    • 2023
  • In this paper, we proposed a face recognition network which attempts to use more facial features awhile using smaller number of training sets. When combining the neural network together for face recognition, we want to use networks that use different part of the facial features. However, the network training chooses randomly where these facial features are obtained. Other hand, the judgment basis of the network model can be expressed as a saliency map through gradCAM. Therefore, in this paper, we use gradCAM to visualize where the trained face recognition model has made a observations and recognition judgments. Thus, the network combination can be constructed based on the different facial features used. Using this approach, we trained a network for small face recognition problem. In an simple toy face recognition example, the recognition network used in this paper improves the accuracy by 1.79% and reduces the equal error rate (EER) by 0.01788 compared to the conventional approach.

Parameter Analysis for Super-Resolution Network Model Optimization of LiDAR Intensity Image (LiDAR 반사 강도 영상의 초해상화 신경망 모델 최적화를 위한 파라미터 분석)

  • Seungbo Shim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.137-147
    • /
    • 2023
  • LiDAR is used in autonomous driving and various industrial fields to measure the size and distance of an object. In addition, the sensor also provides intensity images based on the amount of reflected light. This has a positive effect on sensor data processing by providing information on the shape of the object. LiDAR guarantees higher performance as the resolution increases but at an increased cost. These conditions also apply to LiDAR intensity images. Expensive equipment is essential to acquire high-resolution LiDAR intensity images. This study developed artificial intelligence to improve low-resolution LiDAR intensity images into high-resolution ones. Therefore, this study performed parameter analysis for the optimal super-resolution neural network model. The super-resolution algorithm was trained and verified using 2,500 LiDAR intensity images. As a result, the resolution of the intensity images were improved. These results can be applied to the autonomous driving field and help improve driving environment recognition and obstacle detection performance

Beauty Product Recommendation System using Customer Attributes Information (고객의 특성 정보를 활용한 화장품 추천시스템 개발)

  • Hyojoong Kim;Woosik Shin;Donghoon Shin;Hee-Woong Kim;Hwakyung Kim
    • Information Systems Review
    • /
    • v.23 no.4
    • /
    • pp.69-86
    • /
    • 2021
  • As artificial intelligence technology advances, personalized recommendation systems using big data have attracted huge attention. In the case of beauty products, product preferences are clearly divided depending on customers' skin types and sensitivity along with individual tastes, so it is necessary to provide customized recommendation services based on accumulated customer data. Therefore, by employing deep learning methods, this study proposes a neural network-based recommendation model utilizing both product search history and context information such as gender, skin types and skin worries of customers. The results show that our model with context information outperforms collaborative filtering-based recommender system models using customer search history.

Detection Model of Fruit Epidermal Defects Using YOLOv3: A Case of Peach (YOLOv3을 이용한 과일표피 불량검출 모델: 복숭아 사례)

  • Hee Jun Lee;Won Seok Lee;In Hyeok Choi;Choong Kwon Lee
    • Information Systems Review
    • /
    • v.22 no.1
    • /
    • pp.113-124
    • /
    • 2020
  • In the operation of farms, it is very important to evaluate the quality of harvested crops and to classify defective products. However, farmers have difficulty coping with the cost and time required for quality assessment due to insufficient capital and manpower. This study thus aims to detect defects by analyzing the epidermis of fruit using deep learning algorithm. We developed a model that can analyze the epidermis by applying YOLOv3 algorithm based on Region Convolutional Neural Network to video images of peach. A total of four classes were selected and trained. Through 97,600 epochs, a high performance detection model was obtained. The crop failure detection model proposed in this study can be used to automate the process of data collection, quality evaluation through analyzed data, and defect detection. In particular, we have developed an analytical model for peach, which is the most vulnerable to external wounds among crops, so it is expected to be applicable to other crops in farming.

On the Development of Agent-Based Online Game Characters (에이전트 기반 지능형 게임 캐릭터 구현에 관한 연구)

  • 이재호;박인준
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.379-384
    • /
    • 2002
  • 개발적인 측면에서 온라인 게임 환경에서의 NPC(Non Playable Character)들은 환경인식능력, 이동능력, 특수 능력 및 아이템의 소유 배분 등을 원활히 하기 위한 능력들을 소유해야 하며, 게임 환경을 인식, 저장하기 위한 데이터구조와 자신만의 독특한 임무(mission)를 달성하기 위한 계획을 갖고 행위를 해야 한다. 이런 의미에서 NPC는 자신만의 고유한 규칙과 행동 패턴, 그리고 목표(Goal)와 이를 실행하기 위한 계획(plan)을 소유하는 에이전트로 인식되어야 할 것이다. 그러나, 기존 게임의 NPC 제어 구조나 구현 방법은 이러한 요구조건에 부합되지 못한 부분이 많았다. C/C++ 같은 컴퓨터 언어들을 이용한 구현은 NPC의 유연성이나, 행위에 많은 문제점이 있었다. 이들 언어의 switch 문법은 NPC의 몇몇 특정 상태를 묘사하고, 그에 대한 행위를 지정하는 방법으로 사용되었으나, 게임 환경이 복잡해지면서, 더욱더 방대한 코드를 만들어야 했고, 해석하는데 많은 어려움을 주었으며, 동일한 NPC에 다른 행동패턴을 적용시키기도 어려웠다. 또한, 대부분의 제어권을 게임 서버 폭에서 도맡아 함으로써, 서버측에 많은 과부하 요인이 되기도 하였다. 이러한 어려움을 제거하기 위해서 게임 스크립트를 사용하기도 하였지만, 그 또한 단순 반복적인 패턴에 사용되거나, 캐릭터의 속성적인 측면만을 기술 할 수 있을 뿐이었다 이러한 어려움을 해소하기 위해서는 NPC들의 작업에 필요한 지식의 계층적 분화를 해야 하고, 현재 상황과 목표 변화에 적합한 반응을 표현할 수 있는 스크립트의 개발이 필수 적이라 할 수 있다 또한 스크립트의 실행도 게임 서버 측이 아닌 클라이언트 측에서 수행됨으로써, 서버에 걸리는 많은 부하를 줄일 수 있어야 할 것이다. 본 논문에서는, 대표적인 반응형 에이전트 시스템인 UMPRS/JAM을 이용하여, 에이전트 기반의 게임 캐릭터 구현 방법론에 대해 알아본다.퓨터 부품조립을 사용해서 Template-based reasoning 예를 보인다 본 방법론은 검색노력을 줄이고, 검색에 있어 Feasibility와 Admissibility를 보장한다.매김할 수 있는 중요한 계기가 될 것이다.재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without complexity of computation. Adaptive transversal filter with proposed data recycling buffer algorithm could efficiently reject ISI of channel and increase speed of convergence in avoidance burden of computational complexity in reality when it was experimented having

  • PDF

Performance Comparison of Reinforcement Learning Algorithms for Futures Scalping (해외선물 스캘핑을 위한 강화학습 알고리즘의 성능비교)

  • Jung, Deuk-Kyo;Lee, Se-Hun;Kang, Jae-Mo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.697-703
    • /
    • 2022
  • Due to the recent economic downturn caused by Covid-19 and the unstable international situation, many investors are choosing the derivatives market as a means of investment. However, the derivatives market has a greater risk than the stock market, and research on the market of market participants is insufficient. Recently, with the development of artificial intelligence, machine learning has been widely used in the derivatives market. In this paper, reinforcement learning, one of the machine learning techniques, is applied to analyze the scalping technique that trades futures in minutes. The data set consists of 21 attributes using the closing price, moving average line, and Bollinger band indicators of 1 minute and 3 minute data for 6 months by selecting 4 products among futures products traded at trading firm. In the experiment, DNN artificial neural network model and three reinforcement learning algorithms, namely, DQN (Deep Q-Network), A2C (Advantage Actor Critic), and A3C (Asynchronous A2C) were used, and they were trained and verified through learning data set and test data set. For scalping, the agent chooses one of the actions of buying and selling, and the ratio of the portfolio value according to the action result is rewarded. Experiment results show that the energy sector products such as Heating Oil and Crude Oil yield relatively high cumulative returns compared to the index sector products such as Mini Russell 2000 and Hang Seng Index.

Study on the development of automatic translation service system for Korean astronomical classics by artificial intelligence - Focused on development results and test operation (천문 고문헌 특화 인공지능 자동번역 서비스 시스템 개발 연구 - 개발 결과 및 시험 운영 위주)

  • Seo, Yoon Kyung;Kim, Sang Hyuk;Ahn, Young Sook;Choi, Go-Eun;Choi, Young Sil;Baik, Hangi;Sun, Bo Min;Kim, Hyun Jin;Choi, Byung Sook;Lee, Sahng Woon;Park, Raejin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.56.1-56.1
    • /
    • 2020
  • 한국의 고문헌 중에는 다양한 고천문 기록들이 한문 형태로 존재하며, 이를 학술적으로 활용하기 위해서는 전문 번역가 투입에 따른 많은 비용과 시간이 요구된다. 이에 인공신경망 기계학습에 의한 인공지능 번역기를 개발하여 비록 초벌 번역 수준일지라도 문장 형태의 한문을 한글로 자동번역해 주는 학술 도구를 소개하고자 한다. 이 자동번역기는 한국천문연구원이 한국정보화진흥원이 주관하는 2019년도 Information and Communication Technology 기반 공공서비스 촉진사업에 한국고전번역원과 공동 참여하여 개발 완료한 것이다. 이 연구는 고천문 도메인에 특화된 인공지능 기계학습용 데이터인 천문 고전 코퍼스를 구축하여 이를 기반으로 천문 고전 특화 자동번역 모델을 개발하고 번역 서비스하는 것을 목적으로 한다. 이를 위해 구축되는 시스템은 크게 세 가지이다. 첫째, 로그인이 필요 없이 누구나 웹 접속을 통해 사용이 가능한 클라우드 기반의 고문헌 자동번역 대국민서비스 시스템이다. 둘째, 참여 기관별로 구축된 코퍼스와 도메인 특화된 번역 모델의 생성 및 관리할 수 있는 클라우드 기반의 대기관 서비스 플랫폼 구축이다. 셋째, 개발된 자동번역 Applied Programmable Interface를 활용한 한국천문연구원 내 자체 서비스가 가능한 AITHA 시스템이다. 연구 결과로서 먼저 구축된 천문 고전 코퍼스 60,760건에 대한 샘플링 검수 결과는 품질 순도 99.9% 이상이다. 아울러 도출된 천문 고전 특화 번역 모델 총 20개 중 대표 모델에 대한 성능 평가 결과는 기계 번역 텍스트 품질 평가 알고리즘인 Bilingual Evaluation Understudy 평가에서 40.02점이며, 전문가에 의한 휴먼 평가에서 5.0 만점 중 4.05점이다. 이는 당초 연구 목표로 삼았던 초벌 번역 수준에 충분하며, 현재 개발된 시스템들은 자체 시험 운영 중이다. 이 연구는 특수 고문헌에 해당되는 고천문 기록들의 번역 장벽을 낮춰 관련 연구자들의 학술적 접근 및 다양한 연구에 도움을 줄 수 있다는 점에서 의의가 있다. 또한 고천문 분야가 인공지능 자동번역 확산 플랫폼 시범의 첫 케이스로써 추후 타 학문 분야 참여 시 시너지 효과도 기대해 볼 수 있다. 고문헌 자동번역기는 점차 더 많은 학습 데이터와 학습량이 쌓일수록 더 좋은 학술 도구로 진화할 것이다.

  • PDF

The Detection of Online Manipulated Reviews Using Machine Learning and GPT-3 (기계학습과 GPT3를 시용한 조작된 리뷰의 탐지)

  • Chernyaeva, Olga;Hong, Taeho
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.347-364
    • /
    • 2022
  • Fraudulent companies or sellers strategically manipulate reviews to influence customers' purchase decisions; therefore, the reliability of reviews has become crucial for customer decision-making. Since customers increasingly rely on online reviews to search for more detailed information about products or services before purchasing, many researchers focus on detecting manipulated reviews. However, the main problem in detecting manipulated reviews is the difficulties with obtaining data with manipulated reviews to utilize machine learning techniques with sufficient data. Also, the number of manipulated reviews is insufficient compared with the number of non-manipulated reviews, so the class imbalance problem occurs. The class with fewer examples is under-represented and can hamper a model's accuracy, so machine learning methods suffer from the class imbalance problem and solving the class imbalance problem is important to build an accurate model for detecting manipulated reviews. Thus, we propose an OpenAI-based reviews generation model to solve the manipulated reviews imbalance problem, thereby enhancing the accuracy of manipulated reviews detection. In this research, we applied the novel autoregressive language model - GPT-3 to generate reviews based on manipulated reviews. Moreover, we found that applying GPT-3 model for oversampling manipulated reviews can recover a satisfactory portion of performance losses and shows better performance in classification (logit, decision tree, neural networks) than traditional oversampling models such as random oversampling and SMOTE.

CNN-based Image Rotation Correction Algorithm to Improve Image Recognition Rate (이미지 인식률 개선을 위한 CNN 기반 이미지 회전 보정 알고리즘)

  • Lee, Donggu;Sun, Young-Ghyu;Kim, Soo-Hyun;Sim, Issac;Lee, Kye-San;Song, Myoung-Nam;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.225-229
    • /
    • 2020
  • Recently, convolutional neural network (CNN) have been showed outstanding performance in the field of image recognition, image processing and computer vision, etc. In this paper, we propose a CNN-based image rotation correction algorithm as a solution to image rotation problem, which is one of the factors that reduce the recognition rate in image recognition system using CNN. In this paper, we trained our deep learning model with Leeds Sports Pose dataset to extract the information of the rotated angle, which is randomly set in specific range. The trained model is evaluated with mean absolute error (MAE) value over 100 test data images, and it is obtained 4.5951.

Study on Water Stage Prediction using Neuro-Fuzzy with Genetic Algorithm (Neuro-Fuzzy와 유전자알고리즘을 이용한 수위 예측에 관한 연구)

  • Yeo, Woon-Ki;Seo, Young-Min;Jee, Hong-Kee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.382-382
    • /
    • 2011
  • 최근의 극심한 기상이변으로 인하여 발생되는 유출량의 예측에 관한 사항은 치수 이수는 물론 방재의 측면에서도 역시 매우 중요한 관심사로 부각되고 있다. 강우-유출 관계는 유역의 수많은 시 공간적 변수들에 의해 영향을 받기 때문에 매우 복잡하여 예측하기 힘든 요소이며, 과거에는 추계학적 예측모형이나 확정론적 예측모형 혹은 경험적 모형 등을 사용하여 유출량을 예측하였으나 최근에는 인공신경망과 퍼지모형 그리고 유전자 알고리즘과 같은 인공지능기반의 모형들이 많이 사용되고 있다. 하지만 유출량을 예측하고자 할 때 학습자료 및 검정자료로써 사용되는 유출량은 수위-유량 관계곡선식으로부터 구하는 경우가 대부분으로 이는 이렇게 유도된 유출량의 경우 오차가 크기 때문에 그 신뢰성에 문제가 있을 것으로 판단된다. 따라서 본 논문에서는 수위를 직접 예측함으로써 이러한 오차의 문제점을 극복 하고자 한다. Neuro-Fuzzy 모형은 과거자료의 입 출력 패턴에서 정보를 추출하여 지식으로 보유하고, 이를 근거로 새로운 상황에 대한 해답을 제시하도록 하는 인공지능분야의 학습기법으로 인간이 과거의 경험과 훈련으로 지식을 축적하듯이 시스템의 입 출력에 의하여 소속함수를 최적화함으로서 모형의 구조를 스스로 조직화한다. 따라서 수학적 알고리즘의 적용이 어려운 강우와 유출관계를 하천유역이라는 시스템에서 발생된 신호체계의 입 출력패턴으로 간주하고 인간의 사고과정을 근거로 추론과정을 거쳐 수문계의 예측에 적용할 수 있을 것이다. 유전자 알고리즘은 적자생존의 생물학 원리에 바탕을 둔 최적화 기법중의 하나로 자연계의 생명체 중 환경에 잘 적응한 개체가 좀 더 많은 자손을 남길 수 있다는 자연선택 과정과 유전자의 변화를 통해서 좋은 방향으로 발전해 나간다는 자연 진화의 과정인 자연계의 유전자 메커니즘에 바탕을 둔 탐색 알고리즘이다. 즉, 자연계의 유전과 진화 메커니즘을 공학적으로 모델화함으로써 잠재적인 해의 후보들을 모아 군집을 형성한 뒤 서로간의 교배 혹은 변이를 통해서 최적 해를 찾는 계산 모델이다. 이러한 유전자 알고리즘은 전역 샘플링을 중심으로 한 수법으로 해 공간상에서 유전자의 개수만큼 복수의 탐색점을 설정할 뿐만 아니라 교배와 돌연변이 등으로 좁아지는 탐색점 바깥의 영역으로 탐색을 확장할 수 있기 때문에 지역해에 빠질 위험성이 크게 줄어든다. 따라서 예측과 패턴인식에 강한 뉴로퍼지 모형의 해 탐색방법을 유전자 알고리즘을 사용한다면 보다 정확한 해를 찾는 것이 가능할 것으로 판단된다. 따라서 본 논문에서는 선행우량 및 상류의 수위자료로부터 하류의 단시간 수위예측에 관해 연구하였으며, 이를 위해 유전자 알고리즘을 이용항여 소속함수를 최적화 시키는 형태의 Neuro-Fuzzy모형에 대하여 연구하였다.

  • PDF