• Title/Summary/Keyword: 인공지능-딥러닝

Search Result 699, Processing Time 0.031 seconds

A Study on generating adversarial examples (적대적 사례 생성 기법 동향)

  • Oh, Yu-Jin;Kim, Hyun-Ji;Lim, Se-Jin;Seo, Hwa-Jeong
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.580-583
    • /
    • 2021
  • 인공지능이 발전함에 따라 그에 따른 보안의 중요성이 커지고 있다. 딥러닝을 공격하는 방법 중 하나인 적대적 공격은 적대적 사례를 활용한 공격이다. 이 적대적 사례를 생성하는 대표적인 4가지 기법들에는 기울기 손실함수을 활용하는 FGSM, 네트워크에 쿼리를 반복하여 공격하는 Deepfool, 입력과 결과에 대한 맵을 생성하는 JSMA, 잡음과 원본 데이터의 상관관계에 기반한 공격인 CW 기법이 있다. 이외에도 적대적 사례를 생성하는 다양한 연구들이 진행되고 있다. 그 중에서도 본 논문에서는 FGSM기반의 ABI-FGM, JSMA 기반의 TJSMA, 그 외에 과적합을 줄이는 CIM, DE 알고리즘에 기반한 One pixel 등 최신 적대적 사례 생성 연구에 대해 살펴본다.

A Gradient-Based Explanation Method for Graph Convolutional Neural Networks (그래프 합성곱 신경망에 대한 기울기(Gradient) 기반 설명 기법)

  • Kim, Chaehyeon;Lee, Ki Yong
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.670-673
    • /
    • 2022
  • 설명가능한 인공지능은 딥러닝과 같은 복잡한 모델에서 어떠한 원리로 해당 결과를 도출해냈는지에 대한 설명을 함으로써 구축된 모델을 이해할 수 있도록 설명하는 기술이다. 최근 여러 분야에서 그래프 형태의 데이터들이 생성되고 있으며, 이들에 대한 분류를 위해 다양한 그래프 신경망들이 사용되고 있다. 본 논문에서는 대표적인 그래프 신경망인 그래프 합성곱 신경망(graph convolutional network, GCN)에 대한 설명 기법을 제안한다. 제안 기법은 주어진 그래프의 각 노드를 GCN을 사용하여 분류했을 때, 각 노드의 어떤 특징들이 분류에 가장 큰 영향을 미쳤는지를 수치로 알려준다. 제안 기법은 최종 분류 결과에 영향을 미친 요소들을 gradient를 통해 단계적으로 추적함으로써 각 노드의 어떤 특징들이 분류에 중요한 역할을 했는지 파악한다. 가상 데이터를 통한 실험을 통해 제안 방법은 분류에 가장 큰 영향을 주는 노드들의 특징들을 실제로 정확히 찾아냄을 확인하였다.

A Risk Prediction System of Air Pollution Influencing Diseases Utilzing Keras (Keras를 이용한 대기오염이 유해질환에 미치는 위험 예측 시스템)

  • Lee, Jisu;Lee, Yu-jeong;Yoon, Soo-han;Moon, Yoo-Jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.11-12
    • /
    • 2022
  • 이 연구는 대기오염과 미세먼지의 각 성분이 질환에 미치는 영향에 대한 데이터만 존재한다면 어떠한 질환이든 위험도 예측 결과를 알 수 있는 것에 의미가 있다. 또한 기존의 대기정보에 따른 정보를 예상하는데 필요한 데이터 종류와 수가 많았으며 계산의 복잡성이 높았고 정보의 제공 범위가 넓었다. 하지만 이 연구는 과거 대기 데이터와 딥러닝을 통해서 낮은 비용으로 더욱 자세하게 유해질환 위험도를 예측하는 시스템을 구축하였다. 이 연구에서 구축한 시스템은 예측 결과 88.9%의 정확도를 보였다. 이 시스템은 입력되는 데이터의 정보에 따라 세분화된 지역의 대기환경 정보 또한 파악 가능하며 그 과정이 매우 간편하고 유용하다. 이 시스템은 공기질 예측을 위해 유용하게 사용될 수 있을 것이라고 사료된다.

  • PDF

Development of Artificial Intelligence Self-Driving Robot for the Chasing and Eradicating of Harmful Wild Animals (유해조수추적 및 퇴치를 위한 인공지능 자율주행 로봇 개발)

  • Choi, Jeong-Hwan;Kim, Min-Sung;Kim, Hyung-Hoon;Shim, Hyeon-min
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.842-844
    • /
    • 2022
  • 각종 유해조수로에 의한 피해가 농가에서 발생하고 있다. 이를 해결하기 위해 기존에 Drone을 이용한 유해조수 퇴치연구가 있엇지만 시간의 제약과 법적인 규제로부터 발생되는 문제점이 발견되어 이를 해결하기 위해 Drone을 Caterpillar 구동형 모바일 로봇으로 대체하였고, 자율주행 기능을 추가하였다. 텐서플로우 객체 검출 딥러닝을 적용하여 유해조수를 학습 및 파악한다. 이 후 유해조수 인식 시 사용자에게 실시간 알림 서비스 및 실시간 스트리밍을 제공하고, 유해조수 퇴치 로봇에 장착된 스피커와 Neo Pixel LED을 이용하여 유해조수의 시각과 청각을 자극하여 퇴치한다. ROS, SLAM과 Object Following을 이용하여 자율주행 로봇을 제어하고 객체를 추적한다.

Prediction of Dissolved Oxygen in Jindong Bay Using Time Series Analysis (시계열 분석을 이용한 진동만의 용존산소량 예측)

  • Han, Myeong-Soo;Park, Sung-Eun;Choi, Youngjin;Kim, Youngmin;Hwang, Jae-Dong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.4
    • /
    • pp.382-391
    • /
    • 2020
  • In this study, we used artificial intelligence algorithms for the prediction of dissolved oxygen in Jindong Bay. To determine missing values in the observational data, we used the Bidirectional Recurrent Imputation for Time Series (BRITS) deep learning algorithm, Auto-Regressive Integrated Moving Average (ARIMA), a widely used time series analysis method, and the Long Short-Term Memory (LSTM) deep learning method were used to predict the dissolved oxygen. We also compared accuracy of ARIMA and LSTM. The missing values were determined with high accuracy by BRITS in the surface layer; however, the accuracy was low in the lower layers. The accuracy of BRITS was unstable due to the experimental conditions in the middle layer. In the middle and bottom layers, the LSTM model showed higher accuracy than the ARIMA model, whereas the ARIMA model showed superior performance in the surface layer.

An Integrated and Complementary Evaluation System for Judging the Severity of Knee Osteoarthritis Using CNN (CNN 기반 슬관절 골관절염 중증도 판단을 위한 통합 보완된 등급 판정 시스템)

  • YeChan Yoon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.4
    • /
    • pp.77-89
    • /
    • 2024
  • Knee osteoarthritis (OA) is a very common musculoskeletal disorder worldwide. The assessment of knee osteoarthritis, which requires a rapid and accurate initial diagnosis, is determined to be different depending on the currently dispersed classification system, and each classification system has different criteria. Also, because the medical staff directly sees and reads the X-ray pictures, it depends on the subjective opinion of the medical staff, and it takes time to establish an accurate diagnosis and a clear treatment plan. Therefore, in this study, we designed the stenosis length measurement algorithm and Osteophyte detection and length measurement algorithm, which are the criteria for determining the knee osteoarthritis grade, separately using CNN, which is a deep learning technique. In addition, we would like to create a grading system that integrates and complements the existing classification system and show results that match the judgments of actual medical staff. Based on publicly available OAI (Osteoarthritis Initiative) data, a total of 9,786 knee osteoarthritis data were used in this study, eventually achieving an Accuracy of 69.8% and an F1 score of 76.65%.

A Study on Hangul Handwriting Generation and Classification Mode for Intelligent OCR System (지능형 OCR 시스템을 위한 한글 필기체 생성 및 분류 모델에 관한 연구)

  • Jin-Seong Baek;Ji-Yun Seo;Sang-Joong Jung;Do-Un Jeong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.4
    • /
    • pp.222-227
    • /
    • 2022
  • In this paper, we implemented a Korean text generation and classification model based on a deep learning algorithm that can be applied to various industries. It consists of two implemented GAN-based Korean handwriting generation models and CNN-based Korean handwriting classification models. The GAN model consists of a generator model for generating fake Korean handwriting data and a discriminator model for discriminating fake handwritten data. In the case of the CNN model, the model was trained using the 'PHD08' dataset, and the learning result was 92.45. It was confirmed that Korean handwriting was classified with % accuracy. As a result of evaluating the performance of the classification model by integrating the Korean cursive data generated through the implemented GAN model and the training dataset of the existing CNN model, it was confirmed that the classification performance was 96.86%, which was superior to the existing classification performance.

A study on machine learning-based defense system proposal through web shell collection and analysis (웹쉘 수집 및 분석을 통한 머신러닝기반 방어시스템 제안 연구)

  • Kim, Ki-hwan;Shin, Yong-tae
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.87-94
    • /
    • 2022
  • Recently, with the development of information and communication infrastructure, the number of Internet access devices is rapidly increasing. Smartphones, laptops, computers, and even IoT devices are receiving information and communication services through Internet access. Since most of the device operating environment consists of web (WEB), it is vulnerable to web cyber attacks using web shells. When the web shell is uploaded to the web server, it is confirmed that the attack frequency is high because the control of the web server can be easily performed. As the damage caused by the web shell occurs a lot, each company is responding to attacks with various security devices such as intrusion prevention systems, firewalls, and web firewalls. In this case, it is difficult to detect, and in order to prevent and cope with web shell attacks due to these characteristics, it is difficult to respond only with the existing system and security software. Therefore, it is an automated defense system through the collection and analysis of web shells based on artificial intelligence machine learning that can cope with new cyber attacks such as detecting unknown web shells in advance by using artificial intelligence machine learning and deep learning techniques in existing security software. We would like to propose about. The machine learning-based web shell defense system model proposed in this paper quickly collects, analyzes, and detects malicious web shells, one of the cyberattacks on the web environment. I think it will be very helpful in designing and building a security system.

A Study on Deep Learning based Aerial Vehicle Classification for Armament Selection (무장 선택을 위한 딥러닝 기반의 비행체 식별 기법 연구)

  • Eunyoung, Cha;Jeongchang, Kim
    • Journal of Broadcast Engineering
    • /
    • v.27 no.6
    • /
    • pp.936-939
    • /
    • 2022
  • As air combat system technologies developed in recent years, the development of air defense systems is required. In the operating concept of the anti-aircraft defense system, selecting an appropriate armament for the target is one of the system's capabilities in efficiently responding to threats using limited anti-aircraft power. Much of the flying threat identification relies on the operator's visual identification. However, there are many limitations in visually discriminating a flying object maneuvering high speed from a distance. In addition, as the demand for unmanned and intelligent weapon systems on the modern battlefield increases, it is essential to develop a technology that automatically identifies and classifies the aircraft instead of the operator's visual identification. Although some examples of weapon system identification with deep learning-based models by collecting video data for tanks and warships have been presented, aerial vehicle identification is still lacking. Therefore, in this paper, we present a model for classifying fighters, helicopters, and drones using a convolutional neural network model and analyze the performance of the presented model.

A Study of Tram-Pedestrian Collision Prediction Method Using YOLOv5 and Motion Vector (YOLOv5와 모션벡터를 활용한 트램-보행자 충돌 예측 방법 연구)

  • Kim, Young-Min;An, Hyeon-Uk;Jeon, Hee-gyun;Kim, Jin-Pyeong;Jang, Gyu-Jin;Hwang, Hyeon-Chyeol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.12
    • /
    • pp.561-568
    • /
    • 2021
  • In recent years, autonomous driving technologies have become a high-value-added technology that attracts attention in the fields of science and industry. For smooth Self-driving, it is necessary to accurately detect an object and estimate its movement speed in real time. CNN-based deep learning algorithms and conventional dense optical flows have a large consumption time, making it difficult to detect objects and estimate its movement speed in real time. In this paper, using a single camera image, fast object detection was performed using the YOLOv5 algorithm, a deep learning algorithm, and fast estimation of the speed of the object was performed by using a local dense optical flow modified from the existing dense optical flow based on the detected object. Based on this algorithm, we present a system that can predict the collision time and probability, and through this system, we intend to contribute to prevent tram accidents.