Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.78-78
/
2021
영상유속분석법은 비접촉식으로 유속을 측정하는 방법으로 특히 홍수시 하천의 표면유속을 안전하게 계측할 수 있어서 경제적이고 안전한 하천유속 측정 방법 중 하나이다. STIV는 영상의 휘도 정보를 시간 방향으로 나열하여 작성된 STI(Space-Time Image)에 나타나는 패턴의 기울기를 이용하여 유속을 산정하는 방법이다. 특히 STIV(Space-Time Image Velocimetry)는 기존 입자군의 상호상관법에 기초한 입자영상유속계와 달리 표식자의 유무와 상관없이 유속을 측정할 수 있어 적용성과 안정성이 확보된다. 하지만 영상의 상태가 불량한 경우 정확한 유속 측정이 난해하며 야간에는 별도의 조명 추가 및 태풍과 같은 악기상에서는 빗방울이 카메라에 맺히거나 수면의 진동, 구조물의 진동에 의한 영상의 상태가 불량하게 되어 측정 정도가 떨어진다. 이처럼 영상을 이용한 유속 계측에 있어 다양한 연구 및 기술개발이 요구되는 시점이다. 따라서 본 연구에서는 영상을 이용한 정확한 유속측정을 위해 STIV와 인공지능을 융합하여 정확한 유속 평가를 목적으로 한다. 우선 기존 STI에 의한 기울기 추정방법을 확장하여 딥러닝(CNN)에 의한 기울기 추정방법을 도입하였다. CNN은 일반적으로 이미지의 특성을 추출하는데 유용한 방법으로서 STI의 2차원 Fourier변환 이미지를 사용하여 패턴의 기울기를 감지하도록 학습하였고 적용 결과 기울기에 대한 인식율은 매우 양호하였으며 이를 이용한 실제 관측 영상에 적용한 결과 유속에 대한 정밀도도 매우 양호하게 나타났다. 또한 딥러닝을 적용한 STIV는 노이즈(진동, 화면 불량 등)가 있는 영상에서도 안정적으로 유속을 산정할 수 있으며 전파유속계를 이용한 실제 하천의 표면유속 관측치와 비교 검토 결과 매우 양호하게 유속을 평가하고 있는 것으로 나타났다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.463-465
/
2021
Currently, the inspection method printed on food packages and boxes is to sample only a few products and inspect them with human eyes. Such a sampling inspection has the limitation that only a small number of products can be inspected. Therefore, accurate inspection using a camera is required. This paper proposes a deep learning object recognition technology model, which is an artificial intelligence technology, as a method for detecting the defects of expiration date printed on the product packaging. Using the Faster R-CNN (region convolution neural network) model, the color images, converted gray images, and converted binary images of the printed expiration date are trained and then tested, and each detection rates are compared. The detection performance of expiration date printed on the package by the proposed method showed the same detection performance as that of conventional vision-based inspection system.
Smart Farm means creating new value in various fields related to agriculture, including not only agricultural production but also distribution and consumption through the convergence of agriculture and ICT. In Korea, a rental smart farm is created to spread smart agriculture, and a smart farm big data platform is established to promote data collection and utilization. It is pushing for digital transformation of agricultural products distribution from production areas to consumption areas, such as expanding smart APCs, operating online exchanges, and digitizing wholesale market transaction information. As such, although agricultural data is generated according to characteristics from various sources, it is only used as a service using statistics and standardized data. This is because there are limitations due to distributed data collection from agriculture to production, distribution, and consumption, and it is difficult to collect and process various types of data from various sources. Therefore, in this paper, we analyze the current state of domestic agricultural data collection and sharing for digital agriculture and propose a data collection and linkage method for artificial intelligence services. And, using the proposed data, we propose a deep learning-based environmental factor recommendation method.
Jung-Hwan Kim;Young-beom Ko;Jihoon Choi;Hanjin Lee
Journal of the Korea Society of Computer and Information
/
v.29
no.2
/
pp.21-30
/
2024
This research aims to design a system capable of generating real web pages based on deep learning and big data, in three stages. First, a classification system was established based on the industry type and functionality of e-commerce websites. Second, the types of components of web pages were systematically categorized. Third, the entire web page auto-generation system, applicable for deep learning, was designed. By re-engineering the deep learning model, which was trained with actual industrial data, to analyze and automatically generate existing websites, a directly usable solution for the field was proposed. This research is expected to contribute technically and policy-wise to the field of generative AI-based complete website creation and industrial sectors.
Phan, Kim Ngan;Lee, Guee-Sang;Yang, Hyung-Jeong;Kim, Soo-Hyung
Annual Conference of KIPS
/
2021.11a
/
pp.1001-1004
/
2021
Pain is an unpleasant experience for the patient. The recognition and assessment of pain help tailor the treatment to the patient, and they are also challenging in the medical. In this paper, we propose an approach for pain recognition through a deep neural network applied to pre-processed physiological. The proposed approach applies the idea of shortcut connections to concatenate the spatial information of a convolutional neural network and the temporal information of a recurrent neural network. In addition, our proposed approach applies the attention mechanism and achieves competitive performance on the BioVid Heat Pain dataset.
Journal of the Korean Institute of Electrical and Electronic Material Engineers
/
v.35
no.2
/
pp.134-142
/
2022
As industry and technology go through advancement, it is hard to search new materials which satisfy various standards through conventional trial-and-error based research methods. Crystal Graph Convolutional Neural Network(CGCNN) is a neural network which uses material's features as train data, and predicts the material properties(formation energy, bandgap, etc.) much faster than first-principles calculation. This report introduces how to train the CGCNN model which predicts the formation energy using open database. It is anticipated that with a simple programming skill, readers could construct a model using their data and purpose. Developing machine learning model for materials science is going to help researchers who should explore large chemical and structural space to discover materials efficiently.
자연어 기반의 분류모델을 개발할 때 높은 성능을 획득하기 위해서는 데이터의 품질이 중요한 요소이다. 특히 무역상품 국제 분류체계 HS-CODE에서 상품명을 기반으로 HS코드를 분류할 때, 라벨링 된 데이터의 품질에 의해서 분류모델의 성능이 좌우된다. 하지만 현실적으로 확보 가능한 데이터셋에는 데이터 라벨링 오류나 데이터로 활용하기에 특징점이 부족한 데이터들이 다수 존재하기도 한다. 본 연구에서는 분류모델 학습 데이터의 정제 방법론으로, 딥러닝 기반 노이즈 검출 알고리즘을 제안한다. 분류 대상의 특징점이 분류 경계값 주변에 존재한다면 분류하기 모호한 노이즈 데이터일 가능성이 높다고 가정하고, 해당 노이즈 데이터를 검출하는 방법으로 딥러닝 기술을 활용한다. 해당 경계값 노이즈 검출 알고리즘으로 데이터를 정제한 뒤 학습모델의 성능비교 결과, 기존 대비 우수한 분류 정확도를 기록하였다.
This paper presents a multi-label lane detection method for autonomous vehicles based on deep learning. The proposed algorithm can detect two types of lanes: center lane and normal lane. The algorithm uses a convolution neural network with an encoder-decoder architecture to extract features from input images and produce a multi-label heatmap for predicting lane's label. This architecture has the potential to detect more diverse types of lanes in that it can add the number of labels by extending the heatmap's dimension. The proposed algorithm was tested on an OpenLane dataset and achieved 85 Frames Per Second (FPS) in end to-end inference time. The results demonstrate the usability and computational efficiency of the proposed algorithm for the lane detection in autonomous vehicles.
This paper implements an AR manual for a vehicle that can be used even in the vehicle interior space where it is difficult to apply the augmentation method of AR content, which is mainly used, and applies a deep learning model to improve the augmentation matching between real space and virtual objects. Through deep learning, the logo of the steering wheel is recognized regardless of the position, angle, and inclination, and 3D interior space coordinates are generated based on this, and the virtual button is precisely augmented on the actual vehicle parts. Based on the same learning model, the function to recognize the main warning light symbols of the vehicle is also implemented to increase the functionality and usability as an AR manual for vehicles.
Kim Sang Woo;Oh Se Yeong;Seo Yong Uk;Yeon Jeong Hum;Cho Hee Jeong;Youn Joosang
KIPS Transactions on Computer and Communication Systems
/
v.12
no.9
/
pp.273-282
/
2023
Recently, various technologies such as logistics automation and port operations automation with ICT technology are being developed to build smart ports. However, there is a lack of technology development for port safety and safety accident prevention. This paper proposes an AI-based shipping container loading safety management system for the prevention of safety accidents at container loading fields in ports. The system consists of an AI-based shipping container safety accident risk classification and storage function and a real-time safety accident monitoring function. The system monitors the accident risk at the site in real-time and can prevent container collapse accidents. The proposed system is developed as a prototype, and the system is ecaluated by direct application in a port.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.