• Title/Summary/Keyword: 인공지능-딥러닝

Search Result 699, Processing Time 0.03 seconds

Ordinal Depth Based Deductive Weakly Supervised Learning for Monocular 3D Human Pose Estimation (단안 이미지로부터 3D 사람 자세 추정을 위한 순서 깊이 기반 연역적 약지도 학습 기법)

  • Youngchan Lee;Gyubin Lee;Wonsang You
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.826-829
    • /
    • 2024
  • 3D 사람 자세 추정 기술은 다양한 응용 분야에서의 높은 활용성으로 인해 대량의 학습 데이터가 수집되어 딥러닝 모델 연구가 진행되어 온 반면, 동물 자세 추정의 경우 3D 동물 데이터의 부족으로 인해 관련 연구는 극히 미진하다. 본 연구는 동물 자세 추정을 위한 예비연구로서, 3D 학습 데이터가 없는 상황에서 단일 이미지로부터 3D 사람 자세를 추정하는 딥러닝 기법을 제안한다. 이를 위하여 사전 훈련된 다중 시점 학습모델을 사용하여 2D 자세 데이터로부터 가상의 다중 시점 데이터를 생성하여 훈련하는 연역적 학습 기반 교사-학생 모델을 구성하였다. 또한, 키포인트 깊이 정보 대신 2D 이미지로부터 레이블링 된 순서 깊이 정보에 기반한 손실함수를 적용하였다. 제안된 모델이 동물데이터에서 적용 가능한지 평가하기 위해 실험은 사람 데이터를 사용하여 이루어졌다. 실험 결과는 제안된 방법이 기존 단안 이미지 기반 모델보다 3D 자세 추정의 성능을 개선함을 보여준다.

Artificial Intelligence Game System "AlGGAGO" (알까기 인공지능 시스템 "알까고")

  • Lee, Keon-Ho;Yoon, Won-Tak;Park, Jin-Soo;Park, Doo-Soon
    • Annual Conference of KIPS
    • /
    • 2017.04a
    • /
    • pp.932-935
    • /
    • 2017
  • 최근 인공지능은 딥러닝, 기계학습 등 인공지능 기술이 발전되면서 기술 상용화가 가시화되고 있다. 이에 따라 인공지능분야는 다른 산업의 핵심 기술로 급부상과 함께 여러 글로벌 기업들이 적극적 투자를 실시하고 있는 추세이다. 이렇게 인공지능 기술이 발전하면서 인공지능 기반 기술 개발에서 타산업의 핵심기술로 프레임이 변화 되고 있으며 차세대 ICT 핵심 기술로 인식이 확산되고 있다. 따라서 본 논문에서는 이러한 인공지능 방법중 지도 학습의 의사 결정 트리 알고리즘을 사용하여 AWS(Amazone Web Service) EMR 서버에서 이를 알까기에 적용하여 알까고 게임 시스템을 구현하였다.

Design and Implementation of BGM Composition Service Using Deep Learning (딥러닝을 이용한 BGM 음원 작곡 서비스 설계 및 구현)

  • Kim, Young-Hoon;Yoon, Sung-Yeol;Kim, Byung-Woo;Shin, Hyun-Woo;Hwang, Gyu-Young;Han, Youn-Hee
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.986-989
    • /
    • 2019
  • 인공지능에 대한 연구가 계속되고 있지만 음악, 미술, 문학 등 창의력과 예술성을 요구하는 부문에서는 인공지능을 적용하기 어렵다. 하지만 그중 음악 부문에 인공지능을 접목시켜 기존에 없던 곡을 작곡해보고자 한다. LSTM 기반의 모델을 ABC Notation 악보 데이터를 활용하여 학습시켜 사용자들이 음악적 지식 없이도 새로운 음악을 작곡할 수 있도록 딥러닝을 기반으로 한 BGM 음원 작곡 서비스를 제안한다.

Edge Container Remote Control System using RPC protocol (RPC 프로토콜을 활용한 미디어 분석 엣지 컨테이너 원격 제어 시스템)

  • Oh, Seungtaek;Moon, Jaewon;Kum, Seungwoo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.81-83
    • /
    • 2022
  • 고성능 컴퓨팅 기술과 딥 러닝 기술이 충분한 발전을 거쳐 인공지능 기술은 다양한 분야에서 실제로 적용되고 있다. 인공지능 플랫폼 기술이 사용자에게 적절하게 활용되기 위해서 엣지 컴퓨팅 기반의 마이크로 서비스 아키텍처(MSA)가 주목받고 있다. 이와 관련된 기술을 통해 클라우드 기반의 여러 인공지능 애플리케이션들이 엣지 장치에서 직접 처리가 가능하다면 비용적인 측면뿐 아니라 여러 관점에서 효율적이므로 엣지 컨테이너의 운용 기술에 대한 수요가 높아지고 있다. 이에 따라, 본 논문에서는 엣지 디바이스에 간단한 딥 러닝 서비스를 배포하고 운용할 수 있는 컨테이너를 구현하였다. 또한, REST 통신 방법 이외에 RPC 방식을 사용하여 원격 제어를 가능하게 하도록 구성하였으며, 여러 제어 기능들이 동작함을 확인하였다.

  • PDF

The Methodology of the Golf Swing Similarity Measurement Using Deep Learning-Based 2D Pose Estimation

  • Jonghyuk, Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.39-47
    • /
    • 2023
  • In this paper, we propose a method to measure the similarity between golf swings in videos. As it is known that deep learning-based artificial intelligence technology is effective in the field of computer vision, attempts to utilize artificial intelligence in video-based sports data analysis are increasing. In this study, the joint coordinates of a person in a golf swing video were obtained using a deep learning-based pose estimation model, and based on this, the similarity of each swing segment was measured. For the evaluation of the proposed method, driver swing videos from the GolfDB dataset were used. As a result of measuring swing similarity by pairing swing videos of a total of 36 players, 26 players evaluated that their other swing sequence was the most similar, and the average ranking of similarity was confirmed to be about 5th. This ensured that the similarity could be measured in detail even when the motion was performed similarly.

Comparison and analysis of chest X-ray-based deep learning loss function performance (흉부 X-ray 기반 딥 러닝 손실함수 성능 비교·분석)

  • Seo, Jin-Beom;Cho, Young-Bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1046-1052
    • /
    • 2021
  • Artificial intelligence is being applied in various industrial fields to the development of the fourth industry and the construction of high-performance computing environments. In the medical field, deep learning learning such as cancer, COVID-19, and bone age measurement was performed using medical images such as X-Ray, MRI, and PET and clinical data. In addition, ICT medical fusion technology is being researched by applying smart medical devices, IoT devices and deep learning algorithms. Among these techniques, medical image-based deep learning learning requires accurate finding of medical image biomarkers, minimal loss rate and high accuracy. Therefore, in this paper, we would like to compare and analyze the performance of the Cross-Entropy function used in the image classification algorithm of the loss function that derives the loss rate in the chest X-Ray image-based deep learning learning process.

Deep Learning Models for Autonomous Crack Detection System (자동화 균열 탐지 시스템을 위한 딥러닝 모델에 관한 연구)

  • Ji, HongGeun;Kim, Jina;Hwang, Syjung;Kim, Dogun;Park, Eunil;Kim, Young Seok;Ryu, Seung Ki
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.5
    • /
    • pp.161-168
    • /
    • 2021
  • Cracks affect the robustness of infrastructures such as buildings, bridge, pavement, and pipelines. This paper presents an automated crack detection system which detect cracks in diverse surfaces. We first constructed the combined crack dataset, consists of multiple crack datasets in diverse domains presented in prior studies. Then, state-of-the-art deep learning models in computer vision tasks including VGG, ResNet, WideResNet, ResNeXt, DenseNet, and EfficientNet, were used to validate the performance of crack detection. We divided the combined dataset into train (80%) and test set (20%) to evaluate the employed models. DenseNet121 showed the highest accuracy at 96.20% with relatively low number of parameters compared to other models. Based on the validation procedures of the advanced deep learning models in crack detection task, we shed light on the cost-effective automated crack detection system which can be applied to different surfaces and structures with low computing resources.

Forecasting Innovation Performance via Deep Learning Algorithm: A Case of Korean Manufacturing Industry (빅데이터 분석방법을 활용한 제조업 혁신성과예측 방법에 대한 연구 : 딥 러닝 알고리즘을 중심으로)

  • Hwang, Jeong-jae;Kim, Jae Young;Park, Jaemin
    • Proceedings of the Korea Technology Innovation Society Conference
    • /
    • 2017.11a
    • /
    • pp.499-510
    • /
    • 2017
  • 기술혁신에는 본질적인 어려움이 따르는데, 이는 상당부분 기술이 지닌 불확실성에 기인한다. 따라서 혁신 추구의 어려움을 경감에는 혁신 예측 방법론이 큰 도움이 될 수 있다. 한편 최근 빅데이터와 인공지능에 큰 관심이 이어지며 특히 알파고의 알고리즘 중 하나인 딥 러닝이 뛰어난성능을 보이고 있다. 이에 본 연구는 혁신성과 예측에 있어 딥 러닝을 이용한 방법론을 접목하여 연구를 진행하였다.. 모델 구축 및 학습에 있어 KIS 2016 데이터를 이용하였으며, 투입 요인으로는 정보 원천의 사용도와 혁신 목적을 사용하였고 산출 요인으로는 혁신 성과 지표를 구성하여 사용하였다.

  • PDF

Development of Gas Type Identification Deep-learning Model through Multimodal Method (멀티모달 방식을 통한 가스 종류 인식 딥러닝 모델 개발)

  • Seo Hee Ahn;Gyeong Yeong Kim;Dong Ju Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.12
    • /
    • pp.525-534
    • /
    • 2023
  • Gas leak detection system is a key to minimize the loss of life due to the explosiveness and toxicity of gas. Most of the leak detection systems detect by gas sensors or thermal imaging cameras. To improve the performance of gas leak detection system using single-modal methods, the paper propose multimodal approach to gas sensor data and thermal camera data in developing a gas type identification model. MultimodalGasData, a multimodal open-dataset, is used to compare the performance of the four models developed through multimodal approach to gas sensors and thermal cameras with existing models. As a result, 1D CNN and GasNet models show the highest performance of 96.3% and 96.4%. The performance of the combined early fusion model of 1D CNN and GasNet reached 99.3%, 3.3% higher than the existing model. We hoped that further damage caused by gas leaks can be minimized through the gas leak detection system proposed in the study.

Deriving adoption strategies of deep learning open source framework through case studies (딥러닝 오픈소스 프레임워크의 사례연구를 통한 도입 전략 도출)

  • Choi, Eunjoo;Lee, Junyeong;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.27-65
    • /
    • 2020
  • Many companies on information and communication technology make public their own developed AI technology, for example, Google's TensorFlow, Facebook's PyTorch, Microsoft's CNTK. By releasing deep learning open source software to the public, the relationship with the developer community and the artificial intelligence (AI) ecosystem can be strengthened, and users can perform experiment, implementation and improvement of it. Accordingly, the field of machine learning is growing rapidly, and developers are using and reproducing various learning algorithms in each field. Although various analysis of open source software has been made, there is a lack of studies to help develop or use deep learning open source software in the industry. This study thus attempts to derive a strategy for adopting the framework through case studies of a deep learning open source framework. Based on the technology-organization-environment (TOE) framework and literature review related to the adoption of open source software, we employed the case study framework that includes technological factors as perceived relative advantage, perceived compatibility, perceived complexity, and perceived trialability, organizational factors as management support and knowledge & expertise, and environmental factors as availability of technology skills and services, and platform long term viability. We conducted a case study analysis of three companies' adoption cases (two cases of success and one case of failure) and revealed that seven out of eight TOE factors and several factors regarding company, team and resource are significant for the adoption of deep learning open source framework. By organizing the case study analysis results, we provided five important success factors for adopting deep learning framework: the knowledge and expertise of developers in the team, hardware (GPU) environment, data enterprise cooperation system, deep learning framework platform, deep learning framework work tool service. In order for an organization to successfully adopt a deep learning open source framework, at the stage of using the framework, first, the hardware (GPU) environment for AI R&D group must support the knowledge and expertise of the developers in the team. Second, it is necessary to support the use of deep learning frameworks by research developers through collecting and managing data inside and outside the company with a data enterprise cooperation system. Third, deep learning research expertise must be supplemented through cooperation with researchers from academic institutions such as universities and research institutes. Satisfying three procedures in the stage of using the deep learning framework, companies will increase the number of deep learning research developers, the ability to use the deep learning framework, and the support of GPU resource. In the proliferation stage of the deep learning framework, fourth, a company makes the deep learning framework platform that improves the research efficiency and effectiveness of the developers, for example, the optimization of the hardware (GPU) environment automatically. Fifth, the deep learning framework tool service team complements the developers' expertise through sharing the information of the external deep learning open source framework community to the in-house community and activating developer retraining and seminars. To implement the identified five success factors, a step-by-step enterprise procedure for adoption of the deep learning framework was proposed: defining the project problem, confirming whether the deep learning methodology is the right method, confirming whether the deep learning framework is the right tool, using the deep learning framework by the enterprise, spreading the framework of the enterprise. The first three steps (i.e. defining the project problem, confirming whether the deep learning methodology is the right method, and confirming whether the deep learning framework is the right tool) are pre-considerations to adopt a deep learning open source framework. After the three pre-considerations steps are clear, next two steps (i.e. using the deep learning framework by the enterprise and spreading the framework of the enterprise) can be processed. In the fourth step, the knowledge and expertise of developers in the team are important in addition to hardware (GPU) environment and data enterprise cooperation system. In final step, five important factors are realized for a successful adoption of the deep learning open source framework. This study provides strategic implications for companies adopting or using deep learning framework according to the needs of each industry and business.