• Title/Summary/Keyword: 인공지능 전공

Search Result 260, Processing Time 0.021 seconds

Literary Research Using Digital Analysis Tools: A Case Study of 『Dangerous Liaisons』 ('디지털 분석 도구를 활용한 문학 연구 : 라클로의 『위험한 관계Les liaisons dangereuses』를 중심으로)

  • RYU Sun-Jung;YOU Eun-Soon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.173-180
    • /
    • 2024
  • We This study aimed to quantitatively analyze the theme of 'libertinage' and the associated issues of reason and emotion in 『Dangerous Liaisons』, a novel considered a masterpiece of libertine literature and an epistolary novel of the 18th century, using digital analysis tools. First, based on the frequency analysis of word usage using Voyant and LIWC 22, we confirmed that libertinage is manifested with keywords such as 'love' and 'time'. With Voyant's 'Contexts' feature, it was found that the letters sent by Valmont to Madame de Tourvel and those sent by Madame de Merteuil both have 'love' as the central theme. However, emotional vocabulary was higher in the former, whereas strategic vocabulary was more prevalent in the latter. Additionally, it was observed that the most frequently used word in the letters sent by Madame de Merteuil is 'time', with a higher frequency than 'love'. Thirdly, using LIWC 22, we measured the analytical thinking and emotional tone of the letters exchanged by the main characters, and analyzed how these values changed according to the chapters. Through these analyses, we confirmed that this novel, alongside Rousseau's "New Eloise," anticipates romanticism by embracing the theme of 'emotion,' which was rejected by 18th-century Enlightenment ideals.

Experimental Study on Flow Direction of Fire Smoke in DC Electric Fields (DC 전기장 내에서 발생하는 화재연기 진행 방향에 대한 실험적 연구)

  • Park, Juwon;Kim, Youngmin;Seong, Seung Hun;Park, Sanghwan;Kim, Ji Hwan;Chung, Yongho;Yoon, Sung Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.675-682
    • /
    • 2021
  • Fire accidents on land and at sea can cause serious casualties; specifically, owing to the nature of marine plants and ships, the mortality rate at sea from suffocation in confined spaces is significantly higher than that on land. To prevent such cases of asphyxiation, it is essential to install ventilation fans that can outwardly direct these toxic gases from fires; however, considering the scale of marine fires, the installation of large ventilation fans is not easy owing to the nature of marine structures. Therefore, in this study, we developed a new concept for fire safety technology to control toxic gases generated by fires from applied direct current (DC) electric fields. In the event of a fire, most flames contain large numbers of positive and negative charges from chemi-ionization, which generates an "ionic wind" by Lorentz forces through the applied electric fields. Using these ionic winds, an experimental study was performed to artificially control the fire smoke caused by burning paper and styrofoam, which are commonly used as insulation materials in general buildings and ships. The experiments showed that a fire smoke could be artificially controlled by applying a DC voltage in excess of ±5 kV and that relatively effective control was possible by applying a negative voltage rather than a positive voltage.

Exploiting Chunking for Dependency Parsing in Korean (한국어에서 의존 구문분석을 위한 구묶음의 활용)

  • Namgoong, Young;Kim, Jae-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.7
    • /
    • pp.291-298
    • /
    • 2022
  • In this paper, we present a method for dependency parsing with chunking in Korean. Dependency parsing is a task of determining a governor of every word in a sentence. In general, we used to determine the syntactic governor in Korean and should transform the syntactic structure into semantic structure for further processing like semantic analysis in natural language processing. There is a notorious problem to determine whether syntactic or semantic governor. For example, the syntactic governor of the word "먹고 (eat)" in the sentence "밥을 먹고 싶다 (would like to eat)" is "싶다 (would like to)", which is an auxiliary verb and therefore can not be a semantic governor. In order to mitigate this somewhat, we propose a Korean dependency parsing after chunking, which is a process of segmenting a sentence into constituents. A constituent is a word or a group of words that function as a single unit within a dependency structure and is called a chunk in this paper. Compared to traditional dependency parsing, there are some advantage of the proposed method: (1) The number of input units in parsing can be reduced and then the parsing speed could be faster. (2) The effectiveness of parsing can be improved by considering the relation between two head words in chunks. Through experiments for Sejong dependency corpus, we have shown that the USA and LAS of the proposed method are 86.48% and 84.56%, respectively and the number of input units is reduced by about 22%p.

Pyrolysis Effect of Nitrous Oxide Depending on Reaction Temperature and Residence Time (반응온도 및 체류시간에 따른 아산화질소 열분해 효과)

  • Park, Juwon;Lee, Taehwa;Park, Dae Geun;Kim, Seung Gon;Yoon, Sung Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1074-1081
    • /
    • 2021
  • Nitrous oxide (N2O) is one of the six major greenhouse gases and is known to produce a greenhouse ef ect by absorbing infrared radiation in the atmosphere. In particular, its global warming potential (GWP) is 310 times higher than that of CO2, making N2O a global concern. Accordingly, strong environmental regulations are being proposed. N2O reduction technology can be classified into concentration recovery, catalytic decomposition, and pyrolysis according to physical methods. This study intends to provide information on temperature conditions and reaction time required to reduce nitrogen oxides with cost. The high-temperature ranges selected for pyrolysis conditions were calculated at intervals of 100 K from 1073 K to 1373 K. Under temperatures of 1073 K and 1173 K, the N2O reduction rate and nitrogen monoxide concentration were observed to be proportional to the residence time, and for 1273 K, the N2O reduction rate decreased due to generation of the reverse reaction as the residence time increased. Particularly for 1373 K, the positive and reverse reactions for all residence times reached chemical equilibrium, resulting in a rather reduced reaction progression to N2O reduction.

General Relation Extraction Using Probabilistic Crossover (확률적 교차 연산을 이용한 보편적 관계 추출)

  • Je-Seung Lee;Jae-Hoon Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.8
    • /
    • pp.371-380
    • /
    • 2023
  • Relation extraction is to extract relationships between named entities from text. Traditionally, relation extraction methods only extract relations between predetermined subject and object entities. However, in end-to-end relation extraction, all possible relations must be extracted by considering the positions of the subject and object for each pair of entities, and so this method uses time and resources inefficiently. To alleviate this problem, this paper proposes a method that sets directions based on the positions of the subject and object, and extracts relations according to the directions. The proposed method utilizes existing relation extraction data to generate direction labels indicating the direction in which the subject points to the object in the sentence, adds entity position tokens and entity type to sentences to predict the directions using a pre-trained language model (KLUE-RoBERTa-base, RoBERTa-base), and generates representations of subject and object entities through probabilistic crossover operation. Then, we make use of these representations to extract relations. Experimental results show that the proposed model performs about 3 ~ 4%p better than a method for predicting integrated labels. In addition, when learning Korean and English data using the proposed model, the performance was 1.7%p higher in English than in Korean due to the number of data and language disorder and the values of the parameters that produce the best performance were different. By excluding the number of directional cases, the proposed model can reduce the waste of resources in end-to-end relation extraction.

Deep Learning based Estimation of Depth to Bearing Layer from In-situ Data (딥러닝 기반 국내 지반의 지지층 깊이 예측)

  • Jang, Young-Eun;Jung, Jaeho;Han, Jin-Tae;Yu, Yonggyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.3
    • /
    • pp.35-42
    • /
    • 2022
  • The N-value from the Standard Penetration Test (SPT), which is one of the representative in-situ test, is an important index that provides basic geological information and the depth of the bearing layer for the design of geotechnical structures. In the aspect of time and cost-effectiveness, there is a need to carry out a representative sampling test. However, the various variability and uncertainty are existing in the soil layer, so it is difficult to grasp the characteristics of the entire field from the limited test results. Thus the spatial interpolation techniques such as Kriging and IDW (inverse distance weighted) have been used for predicting unknown point from existing data. Recently, in order to increase the accuracy of interpolation results, studies that combine the geotechnics and deep learning method have been conducted. In this study, based on the SPT results of about 22,000 holes of ground survey, a comparative study was conducted to predict the depth of the bearing layer using deep learning methods and IDW. The average error among the prediction results of the bearing layer of each analysis model was 3.01 m for IDW, 3.22 m and 2.46 m for fully connected network and PointNet, respectively. The standard deviation was 3.99 for IDW, 3.95 and 3.54 for fully connected network and PointNet. As a result, the point net deep learing algorithm showed improved results compared to IDW and other deep learning method.

A Study on Biometric Model for Information Security (정보보안을 위한 생체 인식 모델에 관한 연구)

  • Jun-Yeong Kim;Se-Hoon Jung;Chun-Bo Sim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.317-326
    • /
    • 2024
  • Biometric recognition is a technology that determines whether a person is identified by extracting information on a person's biometric and behavioral characteristics with a specific device. Cyber threats such as forgery, duplication, and hacking of biometric characteristics are increasing in the field of biometrics. In response, the security system is strengthened and complex, and it is becoming difficult for individuals to use. To this end, multiple biometric models are being studied. Existing studies have suggested feature fusion methods, but comparisons between feature fusion methods are insufficient. Therefore, in this paper, we compared and evaluated the fusion method of multiple biometric models using fingerprint, face, and iris images. VGG-16, ResNet-50, EfficientNet-B1, EfficientNet-B4, EfficientNet-B7, and Inception-v3 were used for feature extraction, and the fusion methods of 'Sensor-Level', 'Feature-Level', 'Score-Level', and 'Rank-Level' were compared and evaluated for feature fusion. As a result of the comparative evaluation, the EfficientNet-B7 model showed 98.51% accuracy and high stability in the 'Feature-Level' fusion method. However, because the EfficietnNet-B7 model is large in size, model lightweight studies are needed for biocharacteristic fusion.

The Need and Improvement Direction of New Computer Media Classes in Landscape Architectural Education in University (대학 내 조경전공 교육과정에 있어 새로운 컴퓨터 미디어 수업의 필요와 개선방향)

  • Na, Sungjin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.1
    • /
    • pp.54-69
    • /
    • 2021
  • In 2020, civilized society's overall lifestyle showed a distinct change from consumable analog media, such as paper, to digital media with the increased penetration of cloud computing, and from wired media to wireless media. Based on these social changes, this work examines whether the use of computer media in the field of landscape architecture is appropriately applied. This study will give directions for new computer media classes in landscape architectural education in the 4th Industrial Revolution era. Landscape architecture is a field that directly proposes the realization of a positive lifestyle and the creation of a living environment and is closely connected with social change. However, there is no clear evidence that landscape architectural education is making any visible change, while the digital infrastructure of the 4th Industrial Revolution, such as Artificial Intelligence (AI), Big Data, autonomous vehicles, cloud networks, and the Internet of Things, is changing the contemporary society in terms of technology, culture, and economy among other aspects. Therefore, it is necessary to review the current state of the use of computer technology and media in landscape architectural education, and also to examine the alternative direction of the curriculum for the new digital era. First, the basis for discussion was made by studying the trends of computational design in modern landscape architecture. Next, the changes and current status of computer media classes in domestic and overseas landscape education were analyzed based on prior research and curriculum. As a result, the number and the types of computer media classes increased significantly between the study in 1994 and the current situation in 2020 in the foreign landscape department, whereas there were no obvious changes in the domestic landscape department. This shows that the domestic landscape education is passively coping with the changes in the digital era. Lastly, based on the discussions, this study examined alternatives to the new curriculum that landscape architecture department should pursue in a new degital world.

Risk Education and Educational Needs Related to Science and Technology: A Study on Science Teachers' Perceptions (중등 과학교사들이 생각하는 과학기술 관련 위험교육 실태와 교육 요구)

  • Jinhee Kim;Jiyeon Na;Yong Wook Cheong
    • Journal of The Korean Association For Science Education
    • /
    • v.44 no.1
    • /
    • pp.57-75
    • /
    • 2024
  • This study aimed to investigate the current state and educational needs of risk education related to science and technology as perceived by secondary science teachers. A survey was conducted with a total of 366 secondary science teachers. The results are as follows. First, There were more teachers who had not provided education on risks arising from science and technology in terms of risk perception, risk assessment, and risk management than those who had not. Global warming was the most common risk taught by teachers, followed by earthquakes, artificial intelligence, and traffic accidents. Second, teachers recognized that they lacked understanding that the achievement standards of the 2022 revised science curriculum include risks that may occur due to science and technology, but they thought they were prepared to teach. Third, teachers recognized that their understanding of risk perception was higher than that of risk management and risk assessment. Fourth, the experience of teachers in training on risk was very limited, with fewer having training in risk assessment and risk management compared to risk perception. The most common training experienced was in laboratory safety. Fifth, teachers recognized that their capabilities for the 10 goals of risk education were not high. Middle school teachers or teachers majoring in integrated science education evaluated their capabilities relatively highly. Sixth, many teachers thought it was important to address risks in school science education. They prioritized 'information use', 'decision-making skills', and 'influence of mass media', in that order, for importance and called for urgent education in 'action skills', 'information use', and 'influence of risk perception'. Seventh, as a result of deriving the priorities of education needs for each of the 10 goals of risk education, 'action skills', 'influence of risk perception', and 'evaluate risk assessment' were ranked 1st, 2nd, and 3rd, respectively.

Application of Deep Learning for Classification of Ancient Korean Roof-end Tile Images (딥러닝을 활용한 고대 수막새 이미지 분류 검토)

  • KIM Younghyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.3
    • /
    • pp.24-35
    • /
    • 2024
  • Recently, research using deep learning technologies such as artificial intelligence, convolutional neural networks, etc. has been actively conducted in various fields including healthcare, manufacturing, autonomous driving, and security, and is having a significant influence on society. In line with this trend, the present study attempted to apply deep learning to the classification of archaeological artifacts, specifically ancient Korean roof-end tiles. Using 100 images of roof-end tiles from each of the Goguryeo, Baekje, and Silla dynasties, for a total of 300 base images, a dataset was formed and expanded to 1,200 images using data augmentation techniques. After building a model using transfer learning from the pre-trained EfficientNetB0 model and conducting five-fold cross-validation, an average training accuracy of 98.06% and validation accuracy of 97.08% were achieved. Furthermore, when model performance was evaluated with a test dataset of 240 images, it could classify the roof-end tile images from the three dynasties with a minimum accuracy of 91%. In particular, with a learning rate of 0.0001, the model exhibited the highest performance, with accuracy of 92.92%, precision of 92.96%, recall of 92.92%, and F1 score of 92.93%. This optimal result was obtained by preventing overfitting and underfitting issues using various learning rate settings and finding the optimal hyperparameters. The study's findings confirm the potential for applying deep learning technologies to the classification of Korean archaeological materials, which is significant. Additionally, it was confirmed that the existing ImageNet dataset and parameters could be positively applied to the analysis of archaeological data. This approach could lead to the creation of various models for future archaeological database accumulation, the use of artifacts in museums, and classification and organization of artifacts.