• 제목/요약/키워드: 인공지능 전공

검색결과 260건 처리시간 0.028초

골프 스윙 모션 추정에서 Bi-LSTM 기반의 효율적인 이상치 검출 및 보정 기법 (An efficient Bi-LSTM based method for outlier detection and correction in golf swing motion estimation)

  • 주찬양;박지성;오경수;최현준;이동호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.787-790
    • /
    • 2021
  • 본 논문에서는 최신 모션 인식 기술을 활용하여 골프 스윙 비디오에서 사람의 자세를 추정한 후 다양한 원인으로 오검출된 좌표들을 보정하여 자세 추정의 정확도를 높이는 방법을 제안한다. 기존의 사람 자세 추정 모델은 골프 스윙 데이터에서 오검출, 반전, 불안정성, 미검출의 문제를 보여 정확한 자세 추정을 어렵게 했다. 이를 해결하기 위하여 본 연구에서는 자세 추정시 발생하는 이상치 데이터들을 Bi-LSTM 으로 학습하고 골프 스윙의 특징을 고려한 간단한 규칙을 통하여 이상치 데이터를 효과적으로 검출하고 이를 보정하는 방법을 제안한다. 또한 다양한 실험과 분석을 통하여 제안하는 방법이 골프 스윙 모션에서 사람의 자세를 정확히 추정할 수 있음을 보인다.

융복합 시대에 일부 보건계열 전공 학생들의 의료용 인공지능에 대한 기대도 (The Expectation of Medical Artificial Intelligence of Students Majoring in Health in Convergence Era)

  • 문자영;심선주
    • 한국융합학회논문지
    • /
    • 제9권9호
    • /
    • pp.97-104
    • /
    • 2018
  • 본 연구는 보건계열 전공 학생들의 의료용 인공지능에 대한 기대도를 조사하여 의료용 인공지능의 보건의료영역에서의 전반적 활용을 위한 기초자료로 이용하고자 충청남도 천안시에 소재한 일개 대학교 보건계열 전공 대학생들 500명을 대상으로 인공지능에 대한 인지도와 의료용 인공지능에 대한 신뢰도 및 활용에 대한 기대도를 조사하였다. 의료용 인공지능에 대한 인지도는 대상자의 18.6%가 높다고 응답하였고, 의료용 인공지능에 대해 신뢰도는 대상자의 24.8%가 높다고 응답하였으며 의료용 인공지능의 활용에 대한 찬성은 대상자의 38%가 그렇다고 응답하였다. 또한, 인공지능에 대한 인지도와 신뢰도가 높을수록 인공지능의 보건의료 활용에 대한 기대도도 높게 조사되었다. 이상의 결과로 볼 때 전공과정에서의 의료용 인공지능에 대한 교육은 인공지능에 대한 인지도와 신뢰도 및 기대도를 제고시켜 의료용 인공지능을 활용하는 효율적인 보건의료 환경 조성에 초석이 될 것으로 사료된다.

다중 의도 탐지를 통한 공통 대화 주제 식별 시스템 (Common Conversation Topic Identification System through Multi-intent Detection)

  • 오경수;주찬양;이동호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.590-593
    • /
    • 2022
  • 최근 코로나바이러스감염증-19(COVID-19)로 인해서 다양한 비대면 서비스가 증가하고 있는데 그 중에서 사람과 인공지능 간 의사소통하여 정보를 얻는 대화 시스템이 대표적인 서비스이다. 대화 시스템은 입력되는 단일 문장에 대한 정보만을 응답하기 때문에 이전 대화의 정보를 알기 위해서는 질문했던 내용을 다시 입력해야 하는 문제점이 있다. 이런 문제를 해결하고 대화 진행에 도움을 주기 위해서 본 논문에서는 대화 내 문장들의 다중 의도 탐지를 통한 공통 대화 주제 식별 시스템을 제안한다.

최적경로 알고리즘을 활용한 운송 시스템 (Shipping systems using optimal route algorithms)

  • 서지연;오서정;이슬;안소연;유상오
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.1084-1085
    • /
    • 2023
  • 현재 국내 항만에서의 작업은 대부분 수작업으로 진행되기 때문에 다양한 안전사고 발생과 시간 및 비용 등의 손실이 우려된다. 이를 해소하고자 최적경로 알고리즘을 이용한 AGV 차량 및 자동화 크레인으로 무인 스마트 항만을 제안한다. RFID 인식으로 컨테이너의 정보를 확인하고, 각 경로의 노드 정보가 담긴 QR 코드 인식을 통해 최적으로 목적지에 달성하는 것이 핵심이다. 본 논문은 이러한 기능으로 시간 및 비용 절감, 효율 상승과 인명피해 및 안전사고 예방을 목표로 한다.

예비교사를 위한 챗봇 제작 AI-STEAM 교육 사례 연구 (A Case Study on AI-STEAM Education through Making Chatbot for Preservice Teachers)

  • 김지윤;김귀훈;이태욱
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제63차 동계학술대회논문집 29권1호
    • /
    • pp.135-138
    • /
    • 2021
  • 본 논문에서는 예비교사를 위한 AI-STEAM 교육 사례로서 봇빌더를 활용한 챗봇 제작 교육을 실시하고 이를 바탕으로 챗봇 제작 AI-STEAM 교육을 위한 시사점을 제시하였다. 최근 관련 정책이 발표되는 등 인공지능 교육이 학교에서 실시되기 위한 기반이 마련되었다. 인공지능 교육이 학교 현장에 제대로 안착되기 위해서는 현직 교사들에 대한 보수교육 뿐 아니라 교육 및 사범대학의 교원양성과정에서도 인공지능 교육이 실시되어야 할 필요가 있다. 본 논문에서는 교사들의 인공지능 교사교육 요구를 바탕으로 AI-STEAM을 제안하고 다양한 전공의 예비교사를 위한 챗봇 제작 AI-STEAM 교양교육 및 학생 작품 사례를 제시하였다.

  • PDF

대학원 인공지능교육의 방향 탐색: IPA를 활용하여 (A study on AI Education in Graduate School through IPA)

  • 유정아
    • 정보교육학회논문지
    • /
    • 제23권6호
    • /
    • pp.675-687
    • /
    • 2019
  • 인공지능에 대한 관심이 높아짐에 따라 각 대학에서는 인공지능을 전공으로 하는 특수대학원을 설립하고 있으며, 최근에는 정부에서도 인공지능교육에 대한 다양한 지원정책을 수립하고 있다. 그러나 각 대학은 인공지능이라는 최신분야를 전공으로 대학원교육을 진행하는 것에 대한 경험이 부족하고 전문가를 찾기도 쉽지 않아 여러 가지 어려움을 겪고 있다. 이에 이 연구에서는 인공지능을 전공으로 하는 대학원 석사과정 학생들의 반응을 IPA기법을 활용하여 분석하고, 대학원 인공지능전공의 교육방향을 탐색하였다. IPA로 조사한 40개의 항목 중, 인공지능 교육과정의 체계성, 학습수준을 고려한 수업진행, 지도교수와의 학문적 관계개선 등 12개 항목은 우선적으로 개선되어야 하는 항목으로 추출되었다. 이에 비해 조교의 역량, 동료와의 관계 등 8개 항목은 과잉으로 투입되고 있는 부분으로 나타났고, 교수자의 강의역량, 교육내용의 적절성, 학습자의 인공지능 기술, 지식, 태도의 습득 등 12개 항목은 중요도와 실행도가 모두 높은 잘 유지해야 하는 항목으로 나타났다. 이 외에 융복합 교육과정, 교육방법의 다양성 등 8개 항목은 우선순위가 낮은 항목으로 나타났다. 분석결과를 종합하여 대학원 인공지능교육의 방향을 제시하였다. 대학원 인공지능교육은 교육목표에 따라 두개의 트랙(기술특화, 융합확장)으로 구분하여 운영하고, 각 트랙은 학생수준에 적합한 수준별 교육내용과 방법으로 진행되어야 한다. 그리고 대학원 인공지능교육은 전문적인 인공지능지식, 기술, 태도 습득을 위한 정교하고 체계적인 교육과정으로 운영되어야 하고, 학문적 전문성이 있는 우수한 교수진을 중심으로 학생들의 개별화지도 체계를 구성해야 함을 제안하였다.

지체장애인 이동권 보장을 위해 생체신호로 조작하는 지능형 전동휠체어 (Intelligent electric wheelchair operated by bio-signals to guarantee the right of movement for the physically handicapped)

  • 강민철;서동균;정욱현;정진원;황희상;김인수
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.980-981
    • /
    • 2023
  • 본 논문은 생체신호 분석과 인공지능으로 전동휠체어 제어 시스템을 개발한다. 얼굴 근육 움직임에서 나오는 생체신호를 분석하고, 인공지능 모델로 생체신호 패턴을 학습하여 눈동자 및 얼굴 움직임을 해석하고 이를 토대로 전진, 후진, 좌회전, 우회전, 정지, 제어와 같은 6가지 기능을 전동휠체어에 적용하고 신체 제한자의 이용 용이성 및 삶의 질 향상을 목표로 한다.

Analysis of the Current Status of the AI Major Curriculum at Universities Based on Standard of AI Curriculum

  • Kim, Han Sung;Kim, Doohyun;Kim, Sang Il;Lee, Won Joo
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권3호
    • /
    • pp.25-31
    • /
    • 2022
  • 본 연구의 목적은 국내 대학의 인공지능(AI) 전공 교육과정에 대한 실태 분석을 통해 향후, 더욱 체계적인 AI 교육과정 운영을 위한 시사점을 탐색하는 것에 있다. 이를 위해, 사전 연구를 통해 개발한 산업계 수요 기반의 대학 AI 전공 표준형 교육과정을 활용해 국내 대학(SW중심대학 외 총 51개교)과 해외 QS Top 10 대학의 관련 교육과정을 분석하였다. 주요 연구 결과를 살펴보면 다음과 같다. 첫째, 국내 대학의 경우 파이썬 중심의 프로그래밍 과목이 부족하였다. 둘째, AI 응용, 융합 등의 심화학습을 위한 과목이 적었다. 셋째, AI 개발자 직무를 수행하기 위해 요구되는 과목(ex, 컨테이너 인프라 구축, DevOps 실습 등)의 과목이 부족하였다. 넷째, 전문대학의 경우 AI 수학 관련 교과 개설 비율이 낮았다. 본 연구는 이러한 결과를 토대로 향후 체계적인 AI 전공 교육과정 운영을 위한 시사점을 제시하였다.

설명가능한 인공지능기반의 인공지능 교육 프로그램 개발 (A Study to Design the Instructional Program based on Explainable Artificial intelligence)

  • 박다빈;신승기
    • 한국정보교육학회:학술대회논문집
    • /
    • 한국정보교육학회 2021년도 학술논문집
    • /
    • pp.149-157
    • /
    • 2021
  • 2022년 개정 교육과정에 인공지능 교육 도입을 앞두고 인공지능을 학습 소재로 한 다양한 수업들이 개발되어야 하는 시점이다. 본 연구에서는 설계기반연구를 활용하여 설명가능한 인공지능을 기반한 인공지능 교육 프로그램을 개발하였다. 인공지능의 기초, 활용, 윤리 세 분야를 골고루 포괄하며 실생활 사례와도 쉽게 연결시킬 수 있는 설명가능한 인공지능을 핵심 주제로 설정하였다. 일반적인 설계기반연구(Design-based research, DBR)에서는 3차 이상의 반복적인 과정이 이루어지지만 본 연구 결과는 1차 설계, 적용 및 평가에 대한 결과를 바탕으로 연구가 진행되었다. 추후 학교 현장에 적용하여 3차 수정 및 보완을 바탕으로 더욱 완성된 설명가능한 인공지능을 주제로 한 프로그램을 개발하고자 한다. 본 연구가 학교 현장에 도입되는 인공지능 교육의 발전에 도움이 되기를 기대한다.

  • PDF

혼합 중요도 시스템의 주기 변환과 스케줄링 오버헤드간의 트레이드오프 관계 분석 (Analysis of Trade-off between Period Transformation and Scheduling Overhead in Mixed-Criticality System)

  • 윤상운;임지섭;강경태
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.3-5
    • /
    • 2022
  • 혼합 중요도(mixed criticality) 시스템은 안전에 중요한 기능을 우선시하도록 하는 추가적인 안전 요구사항이 존재한다. 그러나 기존 실시간 시스템의 설계로는 이를 만족하지 못하며, 높은 중요도 태스크가 다른 낮은 중요도 태스크로부터 간섭을 받아 데드라인 미스와 같은 문제를 일으키는 중요도 역전(criticality inversion) 문제가 발생할 수 있다. 이러한 중요도 역전 문제를 해결하기 위해 주기 변환(period transformation) 기법을 사용할 수 있지만, 스케줄링 오버헤드의 증가로 인해 오히려 전반적인 태스크의 응답시간이 증가하는 또 다른 문제가 발생하게 된다. 본 논문에서는 주기 변환과 스케줄링 오버헤드 간의 트레이드오프 관계를 설명하고, 실시간 리눅스 시스템에서 해당 문제점을 재연한 후 주기 변환의 적정선을 분석하고자 실험을 진행하였다. 그 결과, 중요도 역전 문제를 해결하기 위한 주기 변환을 그대로 적용할 경우, 문맥 교환이 48.7% 증가 및 스케줄링 오버헤드가 28.7% 증가로 인해 전반적인 응답시간이 증가하여 데드라인 미스가 다수 발생하는 결과를 확인할 수 있었다.

  • PDF